Balancing redox reactions

Balancing redox reactions in basic solutions example

Let’s balance the following redox reaction in basic conditions.

\inline \fn_jvn \large {Ag}_{(s)}+{Zn^{2+}}_{(aq)}\rightleftharpoons {Ag_{2}O}_{(aq)}+{Zn}_{(s)}

Solution

Step 1: Separate the half-reactions.

\inline \fn_jvn \large {Ag}_{(s)}\rightarrow {Ag_2O }_{(aq)}
 
\inline \fn_jvn \large {Zn^{2+}}_{(aq)} \rightarrow {Zn}_{(s)}

Step 2: Balance elements other than O and H.

\inline \fn_jvn \large {2Ag}_{(s)} \rightarrow {Ag_2O}_{(aq)}
 
\inline \fn_jvn \large {Zn^{2+}}_{(aq)} \rightarrow {Zn }_{(s)}

Step 3: Add H2O to balance oxygen.

\inline \fn_jvn \large {H_2O}_{(l)} + {2Ag}_{(s) }\rightarrow {Ag_{2}O}_{(aq)}
 
\inline \fn_jvn \large {Zn^{2+}}_{(aq)} \rightarrow {Zn}_{(s)}

Step 4: Balance hydrogen with protons.

\inline \fn_jvn \large {H_{2}O }_{(l)} + {2Ag}_{(s)} \rightarrow {Ag_{2}O}_{(aq)} + {2H^{+}}_{(aq)}
 
\inline \fn_jvn \large {Zn^{2+} }_{(aq)} \rightarrow {Zn }_{(s)}

Step 5: Balance the charge with e.

 

Step 6: Scale the reactions so that they have an equal amount of electrons. In this case, it is already done.

\inline \fn_jvn \large {H_{2}O }_{(l)} + {2Ag }_{(s)} \rightarrow {Ag_{2}O}_{(aq)} + {2H^{+}}_{(aq)} + 2e^-

\inline \fn_jvn \large {Zn^{2+}}_{(aq)} + 2e^- \rightarrow {Zn}_{(s)}

Step 7: Add the reactions and cancel the electrons.

\inline \fn_jvn \large {H_{2}O}_{(l)} + {2Ag}_{(s)}+ {Zn^{2+}}_{(aq)} \rightarrow {Zn}_{(s)} + {Ag_{2}O}_{(aq)} + {2H^+}_{(aq)}

Step 8: Add OH to balance H+. There are 2 net protons in this equation, so add 2 OH ions to each side.

\inline \dpi{120} \fn_jvn {H_2O}_{(l) }+ {2Ag}_{(s)} + {Zn^{2+}}_{(aq)} + {2OH^-}_{(aq)} \rightarrow {Zn}_{(s)} + {Ag_2O}_{(aq)} + {2H^+}_{(aq)} + {2OH^-}_{(aq)}

Step 9: Combine OH ions and H+ ions that are present on the same side to form water.

\inline \dpi{120} \fn_jvn {H_2O}_{(l)} + {2Ag}_{(s)} + {Zn^{2+}}_{(aq)} + {2OH^{-}}_{(aq)} \rightarrow {Zn}_{(s)} + {Ag_{2}O}_{(aq)} + {2H_{2}O}_{(l)}

Step 10: After cancelling common terms, we have.

\inline \dpi{120} \fn_jvn \large {2Ag}_{(s)} + {Zn^{2+}}_{(aq)} + {2OH^- }_{(aq)} \rightarrow {Zn}_{(s)} + {Ag_{2}O}_{(aq)} + {H_{2}O}_{(l)}

 

Neutral conditions example

Balance the following reaction

\inline \fn_jvn \large {Cu^+}_{(aq)} + {Fe}_{(s)} \rightarrow {Fe^{3+} }_{(aq)} + {Cu }_{(s)}

Solution

Step 1: Separate the half-reactions. By searching for the reduction potential, one can find two separate reactions:

Cu+(aq) + eCu(s)
Cu+(aq)+eCu(s)
Fe3+(aq)+3eFe(s)Fe3+(aq)+3eFe(s)

The copper reaction has a higher potential and thus is being reduced. Iron is being oxidized so the half-reaction should be flipped. This yields:

Cu+(aq) + eCu(s)
Cu+(aq)+eCu(s)
Fe(s) Fe3+(aq) + 3eFe(s)Fe3+(aq)+3e

Step 2: Balance the electrons in the equations. In this case, the electrons are simply balanced by multiplying the entire Cu+(aq)+eCu(s)Cu+(aq)+eCu(s) half-reaction by 3 and leaving the other half reaction as it is. This gives:

3Cu+(aq) + 3e3Cu(s)
3Cu+(aq)+3e3Cu(s)
Fe(s) Fe3+(aq) + 3eFe(s)Fe3+(aq)+3e

Step 3: Adding the equations give:

3Cu+(aq) + 3e+ Fe(s→ 3Cu(s) + Fe3+(aq) + 3e3Cu+(aq)+3e+Fe(s)3Cu(s)+Fe3+(aq)+3e

The electrons cancel out and the balanced equation is left.

3Cu+(aq) + Fe(s) 3Cu(s)+Fe3+(aq)

Comment(s):




Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
100% Free SEO Tools - Tool Kits PRO