Balancing redox reactions

Balancing redox reactions: Examples

Now, let’s try balancing some sample redox reactions using the half equation method by applying the steps above in both an acidic, a basic and a neural dedium

Example in acidic medium

Balance the following redox reaction in acidic conditions.

\inline \fn_jvn \large {Cr_{2}O_{7}^{2-}}_{(aq)}+{HNO_{2}}_{(aq)}\rightleftharpoons {Cr^{3+}}_{(aq)}+{N0_{3}^{-}}_{(aq)}

Solution

Step 1: Separate the half-reactions. The table provided does not have acidic or basic half-reactions, so just write out what is known.

\inline \fn_jvn \large {Cr_{2}O_{7}^{2-}}_{(aq)}\rightarrow {Cr^{3+}}_{(aq)}

\inline \fn_jvn \large {HNO_{2}}_{(aq)}\rightarrow {NO_{3}^{-}}_{(aq)}

Step 2: Balance elements other than O and H. In this example, only chromium needs to be balanced. This gives:

\inline \fn_jvn \large {Cr_{2}O_{7}^{2-}}_{(aq)}\rightarrow {2Cr^{^{3+}}}_{(aq)}
 
\inline \fn_jvn \large {HNO_{2}}_{(aq)}\rightarrow {NO_{3}^{-}}_{(aq)}

Step 3: Add H2O to balance oxygen. The chromium reaction needs to be balanced by adding 7 H2O molecules. The other reaction also needs to be balanced by adding one water molecule. This yields:

\inline \fn_jvn \large {Cr_{2}O_{7}^{2-}}_{(aq)}\rightarrow {2Cr^{3+}}_{(aq)}+{7H_{2}O}_{(l)}

\inline \fn_jvn \large {HNO_{2}}_{(aq)}+{H_{2}O}_{l}\rightarrow {NO_{3}^{-}}_{(aq)}

HNO2(aq)+H2O(l)NO3(aq)

Step 4: Balance hydrogen by adding protons (H+). 14 protons need to be added to the left side of the chromium reaction to balance the 14 (2 per water molecule * 7 water molecules) hydrogens. 3 protons need to be added to the right side of the other reaction.

\inline \fn_jvn \large {14H^{+}}_{(aq)}+{Cr_{2}O_{7}^{2-}}_{(aq)}\rightarrow {2Cr^{3+}}_{(aq)}+{7H_{2}O}_{(l)}
 
\inline \fn_jvn \large {HNO_{2}}_{(aq)}+{H_{2}O}_{(l)}\rightarrow {3H^{+}}_{(aq)}+{NO_{3}^{-}}_{(aq)}

Step 5: Balance the charge of each equation with electrons. The chromium reaction has (14+) + (2-) = 12+ on the left side and (2 * 3+) = 6+ on the right side. To balance, add 6 electrons (each with a charge of -1) to the left side:

\inline \fn_jvn \large 6e^{-}+{14H^{+}}_{(aq)}+{Cr_{2}O_{7}^{2-}}_{(aq)}\rightarrow {2Cr^{3+}}_{(aq)}+{7H_{2}O}_{_{(l)}}

6e+14H+(aq)+Cr2O72(aq)2Cr3+(aq)+7H2O(l)For the other reaction, there is no charge on the left and a (3+) + (-1) = 2+ charge on the right. So add 2 electrons to the right side:
\inline \fn_jvn \large {HNO_{2}}_{(aq)}+{H_{2}O}_{(l)}\rightarrow {3H^{+}}_{(aq)}+{NO_{3}^{-}}_{(aq)}+2e^{-}

Step 6: Scale the reactions so that the electrons are equal. The chromium reaction has 6e and the other reaction has 2e, so it should be multiplied by 3. This gives:

\inline \fn_jvn \large 3[{HNO_{2}}_{(aq)}+{H_{2}O}_{(l)}\rightarrow 3H^{+}_{(aq)}+{NO_{3}^{-}}_{(aq)}+2e^{-}]
 
\inline \fn_jvn \large \Rightarrow {3HNO_{2}}_{(aq)}+{3H_{2}O}_{(l)}\rightarrow {9H^{+}}_{(aq)}+{3NO_{3}^{-}}_{(aq)}+6e^{-}
 
\inline \fn_jvn \large 6e^{-}+{14H^{+}}_{(aq)}+{Cr_{2}O_{7}^{2-}}_{(aq)}\rightarrow {2Cr^{3+}}_{(aq)}+{7H_{2}O}_{(l)}

Step 7: Add the reactions and cancel out common terms.

\inline \fn_jvn \large {3HNO_2}_{(aq)} + {5H^+}_{(aq)} + {Cr_2O_7^{2-}}_{(aq)} \rightleftharpoons {3NO_3^-}_{(aq)} + {2Cr^{3+}}_{(aq)} + {4H_2O}_{(l)}

3HNO2(aq)+3H2O(l)+6e+14H+(aq)+Cr2O72(aq)9H+(aq)+3NO3(aq)+6e+2Cr3+(aq)+

Comment(s):




Ads Blocker Image Powered by Code Help Pro

Ads Blocker Detected!!!

We have detected that you are using extensions to block ads. Please support us by disabling these ads blocker.

Powered By
100% Free SEO Tools - Tool Kits PRO