N18/4/CHEMI/SP2/ENG/TZ0/XX/M

Markscheme

November 2018

Chemistry

Standard level

Paper 2

13 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

C	Question		Answers	Notes	Total
1.	а	i	$n_{CuSO4} = 0.0800 \text{ dm}^3 \times 0.200 \text{ mol dm}^{-3} = 0.0160 \text{ mol } AND$ $n_{Fe} \ll = \frac{3.26 \text{ g}}{55.85 \text{ gmol}^{-1}} \gg = 0.0584 \text{ mol } \checkmark$		2
			CuSO ₄ is the limiting reactant \checkmark	Do not award M2 if mole calculation is not shown.	
1.	а	ii	<i>ALTERNATIVE 1:</i> «0.0160 mol × 63.55 g mol ⁻¹ = » 1.02 «g» ✓	Accept answers in the range 85–86 %. Award [2] for correct final answer.	
			$ \frac{0.872 \text{ g}}{1.02 \text{ g}} \times 100 = 85.5 \text{ w} $		
			ALTERNATIVE 2:		2
			$ \frac{0.872 \text{ g}}{63.55 \text{ g mol}^{-1}} = > 0.0137 \text{ «mol} > \checkmark $		
			« 0.0137 mol 0.0160 mol × 100 = » 85.6 «%» ✓		

C	Question		Answers	Notes	Total
1.	b	i	ALTERNATIVE 1: q = «80.0 g × 4.18 J g ⁻¹ K ⁻¹ × 7.5 K =» 2.5 × 10 ³ «J»/2.5 «kJ» ✓ «per mol of CuSO ₄ = $\frac{-2.5 \text{ kJ}}{0.0160 \text{ mol}}$ = -1.6 × 10 ² kJ mol ⁻¹ » «for the reaction» ΔH = -1.6 × 10 ² «kJ» ✓ ALTERNATIVE 2: q = «80.0 g × 4.18 J g ⁻¹ K ⁻¹ × 7.5 K =» 2.5 × 10 ³ «J»/2.5 «kJ» ✓ «n _{Cu} = $\frac{0.872}{63.55}$ = 0.0137 mol» «per mol of CuSO ₄ = $\frac{-2.5 \text{ kJ}}{0.0137 \text{ mol}}$ = -1.8 × 10 ² kJ mol ⁻¹ » «for the reaction» ΔH = -1.8 × 10 ² «kJ» ✓	Award [2] for correct final answer.	2
1.	b	ii	density «of solution» is 1.00 g cm^{-3} <i>OR</i> specific heat capacity «of solution» is $4.18 \text{ J g}^{-1} \text{ K}^{-1}$ /that of «pure» water <i>OR</i> reaction goes to completion <i>OR</i> iron/CuSO ₄ does not react with other substances \checkmark	The mark for "reaction goes to completion" can only be awarded if 0.0160 mol was used in part (b)(i). Do not accept "heat loss".	1

(continued...)

(Question 1b continued)

Question		on	Answers	Notes	Total
1.	b	iii	ALTERNATIVE 1: «0.2 °C × $\frac{100}{7.5 °C}$ =» 3 %/0.03 √ «0.03 × 160 kJ» = «±» 5 «kJ» √ ALTERNATIVE 2: «0.2 °C × $\frac{100}{7.5 °C}$ =» 3 %/0.03 √ «0.03 × 180 kJ» = «±» 5 «kJ» √	Accept values in the range 4.1–5.5 «kJ». Award [2] for correct final answer.	2

- 5 -

C	Questi	on	Answers	Notes	Total
1.	c	i	$\int_{C} \frac{1}{C} \int_{C} \frac{1}{C} \int_{C} \frac{1}{C} \int_{Time} \frac{1}{C} \int_{C} \frac{1}{C} \int_{Time} \frac{1}{C} \int_{C} $		2
1.	с	ii	«draw a» tangent to the curve at time = 0 \checkmark «rate equals» gradient/slope «of the tangent» \checkmark	Accept suitable diagram.	2
1.	C	111	piece has smaller surface area ✓ lower frequency of collisions <i>OR</i> fewer collisions per second/unit time ✓	Accept "chance/probability" instead of "frequency". Do not accept just "fewer collisions".	2

C	Question		Answers	Notes	Total
2.	а		CH₃CH(OH)CH₃ ✓	Accept the full or condensed structural formula.	1
2.	b		$ \begin{array}{l} & \left(\frac{1.00 \text{ g}}{(12.01 \times 3 + 1.01 \times 8 + 16.00) \text{ g mol}^{-1}} \right) = 0.0166 \text{ (mol CH}_3\text{CH(OH)CH}_3 \text{ (or } 12.01 \times 3 + 1.01 \times 8 + 16.00) \text{ g mol}^{-1}} \\ & \left(0.0166 \text{ mol} \times 6.02 \times 10^{23} \text{ molecules mol}^{-1} \times 8 \text{ atoms molecule}^{-1} = 0.0168 \text{ (mol CH}_3\text{CH(OH)CH}_3 \text{ (or } 12.01 \times 10^{22} \text{ (mol ch}^{-1} \text{ (mol ch}^$	Accept answers in the range 7.99×10^{22} to 8.19×10^{22} . Award [2] for correct final answer.	2
2.	С		secondary <i>AND</i> OH/hydroxyl is attached to a carbon bonded to one hydrogen <i>OR</i> secondary <i>AND</i> OH/hydroxyl is attached to a carbon bonded to two C/R/alkyl/CH ₃ «groups» ✓	Accept "secondary AND OH is attached to the second carbon in the chain".	1
2.	d	i	«potassium/sodium» manganate(VII)/permanganate/KMnO₄/NaMnO₄/MnO₄ ⁻ <i>OR</i> «potassium/sodium» dichromate(VI)/K₂Cr₂O ₇ /Na₂Cr₂O ₇ /Cr₂O ₇ ²⁻ ✓		1
2.	d	ii	-2 🗸		1
2.	d	iii	propanone/propan-2-one/CH₃COCH₃ ✓		1

C	Questi	on	Answers	Notes	Total
3.	а	i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁵ <i>OR</i> [Ar] 4s ² 3d ¹⁰ 4p ⁵ ✓	Accept 3d before 4s.	1
3.	a	ii	Ngang 11 11 11 «4p» 11 «4p» 11 «4s» ✓	Accept double-headed arrows.	1
3.	b		$ \begin{bmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots &$	Accept dots, crosses or lines to represent electron pairs.	1

Q	Question		Answers	Notes	Total
3.	C		Geometry: trigonal/pyramidal ✓ <i>Reason:</i> three bonds <i>AND</i> one lone pair <i>OR</i> four electron domains ✓ <i>O_Br_O angle:</i> 107° ✓	Accept "charge centres" for "electron domains". Accept answers in the range 104–109°.	3
3.	d	i	BrO ₃ ⁻ (aq) + 6e ⁻ + 6H ⁺ (aq) → Br ⁻ (aq) + 3H ₂ O (l) correct reactants and products \checkmark balanced equation \checkmark	Accept reversible arrows.	2
3.	d	ii	$BrO_3^-(aq) + 6Fe^{2+}(aq) + 6H^+(aq) \rightarrow Br^-(aq) + 3H_2O(l) + 6Fe^{3+}(aq) \checkmark$		1

Q	Question		Answers	Notes	Total
4.	а		nuclear charge/number of protons/Z $_{\rm eff}$ increases «causing a stronger pull on the outer electrons» \checkmark	Accept "atomic number" for "number of protons".	2
			same number of shells/«outer» energy level/shielding 🗸		
4.	b	i	isoelectronic/same electronic configuration/«both» have 2.8 \checkmark		2
			more protons in Na⁺ ✔		2
4.	b	ii	Any one of:	Do not accept soluble in water.	
			brittle 🗸		
			high melting point/crystalline/solid «at room temperature» 🗸		
			low volatility ✔	Ignore any chemical properties.	1 max
			conducts electricity when molten \checkmark		
			does not conduct electricity at room temperature \checkmark		

5.	а	all «species» are in same phase ✔	Accept "all species are in same state". Accept "all species are gases".	1
5.	b	<pre>«reaction quotient/Q =» $\frac{[SO_3]^2}{[SO_2]^2 [O_2]} / \frac{0.500^2}{0.200^2 \times 0.300} / 20.8 \checkmark$ reaction quotient/Q/20.8/answer < K_c/280 OR mixture needs more product for the number to equal K_c ✓ reaction proceeds to the right/products ✓</pre>	Do not award M3 without valid reasoning.	3

(Questio	n Answers	Notes	Total
6.	а	Butanoic acid: $CH_3CH_2CH_2COOH(aq) + H_2O(l) \rightleftharpoons CH_3CH_2CH_2COO^-(aq) + H_3O^+(aq) \checkmark$ Ethylamine: $CH_3CH_2NH_2(aq) + H_2O(l) \rightleftharpoons CH_3CH_2NH_3^+(aq) + OH^-(aq) \checkmark$		2
6.	b	Any two of: butanoic acid forms more/stronger hydrogen bonds ✓ butanoic acid forms stronger London/dispersion forces ✓ butanoic acid forms stronger dipole–dipole interaction/force ✓	Accept "butanoic acid forms dimers" Accept "butanoic acid has larger M _r /hydrocarbon chain/number of electrons" for M2. Accept "butanoic acid has larger «permanent» dipole/more polar" for M3.	2 max
6.	C	CH ₃ CH ₂ NH ₃ ⁺ CH ₃ CH ₂ CH ₂ COO ⁻ <i>OR</i> CH ₃ CH ₂ CH ₂ COO ⁻ CH ₃ CH ₂ NH ₃ ⁺ <i>OR</i> CH ₃ CH ₂ CH ₂ COO ⁻ H ₃ N ⁺ CH ₂ CH ₃ \checkmark	The charges are not necessary for the mark.	1

Question		on	Answers	Notes	Total
7.	а		«electrophilic» addition/A _E	Accept "hydrogenation".	
			OR		1
			reduction 🗸		
7.	b		«(-286 kJ) + (-1411 kJ) =» -1697 «kJ» ✓		1
7.	с		≪−1697 kJ + 1561 kJ =» −136 «kJ»		
			OR		1
			«Δ $H^{\ominus} = \Delta H_{f}^{\ominus}$ (products) – Δ H_{f}^{\ominus} (reactants) = −84 kJ – 52 kJ =» −136 «kJ» √		

(Question	Answers	Notes	Total
7.	d	Accurate:		
		no approximations were made in the cycle		
		OR		
		values are specific to the compounds		
		OR		
		Hess's law is a statement of conservation of energy		
		OR		
		method is based on a law		
		OR		
		data in table has small uncertainties \checkmark		
		Approximate:		2
		values were experimentally determined/had uncertainties		
		OR		
		each value has been determined to only three/four significant figures		
		OR		
		different sources have «slightly» different values for enthalpy of combustion		
		OR		
		law is valid until disproved		
		OR		
		law of conservation of energy is now conservation of mass-energy		
		OR		
		small difference between two quite large terms «leads to high percentage uncertainty» \checkmark		