Ministère de la Santé, de l'Hygiène Publique et de la Couverture Maladie Universelle RÉPUBLIQUE DE CÔTE D'IVOIRE UNION-DISCIPLINE-TRAVAIL

Institut National de Formation des Agents de Santé

PRÉPARATION AUX CONCOURS DIRECTS

- SVT
- Culture générale
- Français
- Mathématiques
- Physique-chimie

Édition 2021

Sommaire

THEME : LA COMMUNICATION NERVEUSE

ucture do neri surejuri en incondencia de estadores en pados (i.e.)

Le peri surejuri no no obleso estadores en entre en entre en entre en entre en entre legar en entre le

SCIENCES DE LA VIE ET DE LA TERRE

(SVT)

ce manifestations de l'activité musculaire

le Les aspects une entirem area magnas ocus

set a les aspects ule traques

les de mécapisme que la contraction musculaire

in les autres aspects

l'ests of évaluation

Contigé d'évaluation

THEMS IS IN HEREOFFICE ON ON HELD MALKS

egon I : la formation de l'embryon chez la femme not su censi bini : i maggina migration des spermatozoïdes datsiles voies génitales de infermes en 27.

- I : La traversée de la plane cervicale par les spermatozoïdes el proporte 27.

- 2 : La fécondation

- De la fécondation el la metanon

- 1 : La migration de l'end

THÈME 1: LA COMMUNICATION NERVEUSE

Leçon 1 : les propriétés du tissu nerveux	7
I- Structure du nerf	7
I-1: Le nerf	7
I-2 : La fibre nerveuse	7
II- L'excitabilité du nerf	8
II-1 : Le potentiel de repos	8
II-2 : le potentiel d'action	10
II-3 : les lois découlant de l'excitabilité du nerf	13
III- La conductibilité du nerf	14
III-1 : Le type de fibre	14
III-2 : Le diamètre de la fibre	14
Leçon 2 : le passage de l'influx nerveux au niveaux des synapses	15
I- Structure d'une synapse	15
II- Fonctionnement de la synapse	15
II-1: Les synapses excitatrices	16
II-2: Les synapses inhibitrices	17
Tests d'évaluation	18
Corrigé d'évaluation	18
THÈME 2 : LE FONCTIONNEMENT DU MUSCLE	
Leçon : le muscle strié squelettique	19
I- Structure du muscle strié squelettique	19
I-1 : Morphologie	19
I-2 : Structure microscopique	19
II- Les manifestations de l'activité musculaire	21
II-1 : Les aspects mécaniques	21
II-2 : Les aspects électriques	23
II-3 : Le mécanisme de la contraction musculaire	23
II-4: Les autres aspects	25
Tests d'évaluation	26
Corrigé d'évaluation	26
THÈME 3: LA REPRODUCTION HUMAINE	
Leçon 1 : la formation de l'embryon chez la femme	27
I- La migration des spermatozoïdes dans les voies génitales de la femme	27
I-1 : La traversée de la glaire cervicale par les spermatozoïdes	27
I-2 : La fécondation	28
II- De la fécondation a la nidation	28
II-1 : la migration de l'œuf	29

- Concours d'Entrée INFAS 2021 ---

8 II-2: La nidation	29
	30
I- Le cerveau contrôle le fonctionnement de l'ovaire	30
	30
	2 10 31
	31
II-1 Action des œstrogenes (œstradiol) sur l'utérus	32
	32
	32
	33
III-2 L'ovulation	33
	33
	34
Casaranas menser viet les naris. Pour chaquain la un sprégaline de contribução	
Lecon 3 : La maitrise de la reproduction humaine par les applications n	odernes
de découvertes scientifiques	35
	35
	37
	37
	37
Tests d'évaluation	38
Corrigé d'évaluation	38
THÈME 4 : GÉNÉTIQUE HUMAINE	
Lacan 1 - Transmission d'un caractère dans l'esnèce humaine	40
	40
	41
	42
Leçon 2 : transmission du groupe sanguin dans l'espèce humaine	43
I- le groupe ABO	43
II- le facteur rhésus	43
Tests d'évaluation	44
Corrigé d'évaluation	45
THEME 5: IMMUNOLOGIE	
Leçon 1 : la défense de l'organisme	46
I- La reconnaissance du « soi » pour le défendre	46
II- La réponse immunitaire non spécifique	46
II-1 Les barrières naturelles	47
II-2 La réaction inflammatoire	47
II-3 La phagocytose	4.7
	Leçon 2 : les cycles menstruels chez la femme I- Le cerveau contrôle le fonctionnement de l'ovaire I-1 Action de la FSH sur les ovaires I-2 Action de la LH sur les ovaires II-1 / (voaire contrôle le fonctionnement de l'utérus III-1 / (Action des cestrogenes (cestradiol) sur l'utérus III-2 / (Action de la progestérone sur l'utérus III-2 / (Action de la progestérone sur l'utérus III-1 / (Action des cycles menstruels chez la femme III-1 / (La phase folliculaire III-2 / (voulation III-3 / (La phase luteinique III-4 / (Le rétrocontrôle ou feed-back Leçon 3 : La maitrise de la reproduction humaine par les applications mede découvertes scientifiques II-1 / (Insémination des naissances II-1 / (Insémination artificielle) II-2 / (Insémination artificielle) II-2 / (Insémination artificielle) II-2 / (Insémination artificielle) II-4 / (Insémination artificielle) II-5 / (Insémination artificielle) II-6 / (Insémination artificielle) II-7 / (Insémination artificielle) II-8 / (Insémination artificielle) II-9 / (Insémination artificielle) II-1 / (Insémination artificielle) II-1 / (Insémination artificielle) II-1 / (Insémination artificielle) II-1 / (Insémination artificielle) II-2 / (Insémination artificielle) II-1 / (Insémination artificielle) II-2 / (Insémination artificielle) II-1 / (Insémination artificielle) II-1 / (Insémination artificielle) II-2 / (Insémination artificielle) II-3 / (Insémination artificielle) II-3 / (Insémination artificielle) II-3 / (Insémination artifi

Concours d'Entrée INFAS 2021

III- La réponse immunitaire spécifique	48
III-1 La réponse immunitaire a médiation humorale (RIMH)	34 on 2 les c
III-2 La réponse immunitaire a médiation cellulaire (RIMC)	49
Leçon 2 : Dysfonctionnement du système immunitaire (cas du	sida) 51
I- L'affinité entre le VIH et les lymphocytes T4	mon eniavo 151
II- La multiplication du virus a l'intérieur du LT4	
III- De l'infection au stade de sida malade	
Tests d'évaluation	
	earlo a J. I-III 55

5

(

THEME AT CENEROUS HOWEVER

samming dans l'espèce humaine

NEME STREMMUNDED OFF

to make the large and the second steel

Concours d'Entrée INFAS 2021

III- La réponse immunitaire spécifique	48
III-1 La réponse immunitaire a médiation humorale (RIMH)	34 on 2 les c
III-2 La réponse immunitaire a médiation cellulaire (RIMC)	49
Leçon 2 : Dysfonctionnement du système immunitaire (cas du	sida) 51
I- L'affinité entre le VIH et les lymphocytes T4	mon eniavo 151
II- La multiplication du virus a l'intérieur du LT4	
III- De l'infection au stade de sida malade	
Tests d'évaluation	
$C \cdot I \cdot $	earlo a J. I-III 55

5

(

THEME AT CENEROUS HOWEVER

samming dans l'espèce humaine

NEME STREMMUNDED OFF

to make the large and the second steel

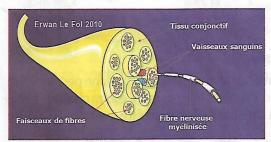
51 51

54

52 - 52

53

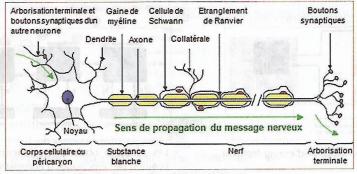
1-1155


LECON 1 : LES PROPRIÉTÉS DU TISSU NERVEUX

Dans l'organisme des cellules émettent diverses substances qui sont reçues par d'autres cellules souvent éloignées. Ce sont d'une part les cellules hormonales, et d'autres part les cellules nerveuses. Dans le cas des cellules nerveuses, ces substances informatives sont transportées par un réseau complexe constituant le système nerveux.

On appelle **tissu nerveux** l'ensemble des cellules et leurs annexes qui forment **les centres nerveux** et les nerfs. Pour comprendre ses propriétés, commençons par sa structure.

I. STRUCTURE DU NERF


I.1. Le nerf

Coupe transversale d'un nerf

La coupe transversale nous montre que le nerf est constitué de fibres nerveuses groupées en faisceaux limités par des enveloppes conjonctives. L'ensemble des faisceaux est emballé dans une autre enveloppe conjonctive qui est celle du nerf. Les espaces libres entre les faisceaux sont remplis par du tissu conjonctif lâche contenant des vaisseaux sanguins.

1.2. La fibre nerveuse

Coupe longitudinale d'un neurone

La coupe ci-dessus nous indique que les fibres nerveuses qui constituent le nerf sont des prolongements des **corps cellulaires** (situés dans un centre nerveux : le cerveau ou la moelle épinière). L'ensemble corps cellulaire (appelé également **soma** ou **péricaryon**) avec des prolongements courts appelés **dendrites** et un prolongement long nommé **axone** ou **cylindraxe** qui se ramifie à son extrémité pour former **l'arborisation terminale**, constitue le **neurone**.

Dans le nerf, l'axone est entouré de gaines de Schwann et de myéline qui présentent des interruptions appelées nœuds de Ranvier.

Pour nous résumer, voici comment se présentent nerf et neurone.

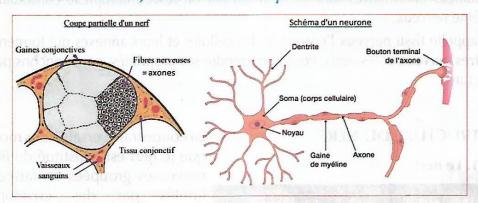


Schéma montrant la différence entre nerf et neurone

II. L'EXCITABILITÉ DU NERF

Si vous portez une excitation efficace sur le nerf, il répond par une perturbation qui génère un influx nerveux. On dit alors que le nerf est **excitable**. Cette réponse donnée par le nerf suite à une excitation peut être enregistrée par un oscilloscope cathodique.

II.1. Le potentiel de repos (PM)

Dans ce cas le nerf est au repos sans excitation et donc sans perturbation.

a) Les observations sur un oscilloscope

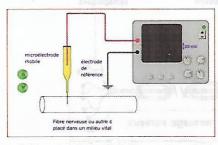
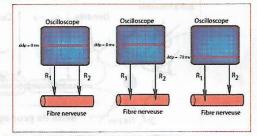



Schéma du dispositif d'enregistrement

I

Les résultats obtenus en fonction de la position des électrodes d'enregistrement

- Quand les 2 électrodes réceptrices sont à la surface de la fibre nerveuse ou à l'intérieur de la fibre, le spot marque 0mv sur l'écran de l'oscilloscope. Cela signifie que les 2 électrodes réceptrices sont au même niveau de charge (même potentiel).
- Quand on enfonce l'électrode réceptrice R1 à l'intérieur de la fibre nerveuse alors que l'électrode R2 est maintenue en surface, le spot dévie à -70mv. Cette différence de potentiel observée entre l'électrode R1 (intérieur de la fibre) et l'électrode R2 (extérieur de la fibre) est appelée potentiel de repos. Cette différence de potentiel n'est pas particulière à la cellule nerveuse ; elle s'étend à toutes les cellules. C'est pourquoi le potentiel de repos est encore appelé potentiel de membrane (PM). Sa valeur est de -70mv.

b) Les explications du potentiel de repos

Deux explications sont valables pour le potentiel de repos :

• Sur le plan électrique :

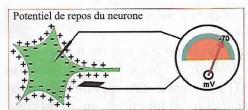
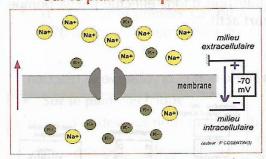



Schéma de l'Interprétation électrique du PM

La différence de potentiel qui existe entre l'intérieur et l'extérieur de la fibre montre que les 2 milieux n'ont pas les mêmes charges. En effet, l'intérieur de la fibre nerveuse est chargé négativement alors que la surface est chargée positivement.

• Sur le plan chimique :

L'intérieur et l'extérieur sont deux milieux différents séparés par la membrane de la fibre nerveuse. Chacun de ces milieux contient des ions à des concentrations différentes.

Problème : comment la répartition dissymétrique des ions K+ et Na+ est-elle établie et entretenue ?

On constate:

- Le milieu intérieur est très concentré en K⁺ et pauvre en Na⁺. Conséquence il est chargé négativement.
- Le milieu extérieur est très concentré en Na⁺ et pauvre en K⁺. Conséquence il est chargé positivement.

Dans les conditions normales, la membrane de la fibre étant perméable, les ions K⁺ devraient diffuser du milieu intérieur vers le milieu extérieur pour réaliser l'équilibre ionique (isotonicité). Les ions Na⁺ devraient réaliser également une diffusion de l'extérieur vers l'intérieur. Mais cela n'est pas le cas. D'où un problème à résoudre : comment la répartition dissymétrique des ions K⁺ et Na⁺ est-elle établie et entretenue ?

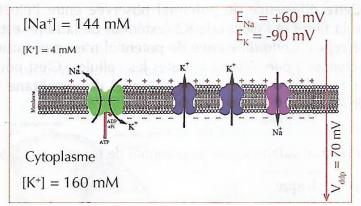


Schéma du transport actif exercé par la pompe Na⁺/K⁺ pour maintenir en permanence le PM

Sur la membrane de la fibre se trouve une protéine qui sert de transporteur aux Na⁺ dans un sens et aux K⁺ en sens inverse et contre leurs gradients de concentration. Cette protéine est une ATPase c'est-à-dire qu'elle hydrolyse l'ATP cellulaire pour fournir l'énergie nécessaire au fonctionnement de cette pompe. Ce qui maintient les concentrations de ces ions dans les deux milieux. D'où la répartition dissymétrique des ions K⁺ et Na⁺ de part et d'autre de la membrane de la fibre nerveuse. Ce transport d'ions effectué par la pompe Na⁺/K⁺ dépendant est donc un **transport actif**.

II.2. Le potentiel d'action

Dans ce cas on porte une stimulation sur le nerf et on observe sa réaction.

a) Les observations sur un oscilloscope

Le dispositif d'enregistrement se compose d'un stimulateur relié à 2 électrodes excitatrices (EE) sur lesquelles est posée une fibre nerveuse à l'intérieur d'une cuve à nerf. La cuve se prolonge par 2 électrodes réceptrices (ER) reliées à un amplificateur. Le message amplifié

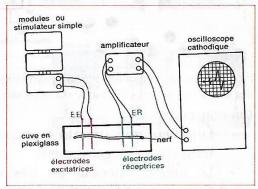
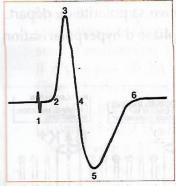
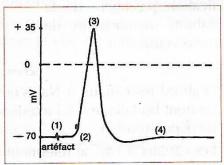



Schéma du dispositif d'enregistrement du PA

parvient à un **oscilloscope cathodique** et visionné sur son écran. Quand une excitation efficace est portée par le stimulateur sur la fibre, la réponse obtenue est fonction de la position occupée par les électrodes réceptrices (ER) par rapport à la fibre.


• Si les ER sont à la surface de la fibre on obtient un **PA diphasique** commençant à 0 mv.

On peut le décomposer comme suit :

Un PA diphasique

- En (1) Artéfact de stimulation
- De (1) à (2) : le temps de latence
- De (2) à (3) : **phase de dépolarisation** de la première électrode réceptrice
- De (3) à (4) : phase de repolarisation de la première électrode réceptrice
- De (4) à (5) : phase de dépolarisation de la deuxième électrode réceptrice
 - De (5) à (6) : phase de repolarisation de la deuxième électrode réceptrice
- Si une des électrodes réceptrices est à la surface de la fibre et l'autre placée à un endroit lésé de la fibre ou à l'intérieur de celle-ci, on obtient un PA monophasique commençant à 0 mv pour le premier cas ou à -70 mv pour le deuxième cas.

Un PA monophasique

b) Les explications du potentiel d'action

• Sur le plan électrique

Le schéma ci-dessous nous indique que :

- (1) Artéfact de stimulation correspond à l'instant précis de l'excitation. Cela provoque une **inversion de la polarité** de la fibre (l'intérieur devient positif alors que l'extérieur devient négatif). Cette inversion n'est pas encore au niveau de l'électrode réceptrice.

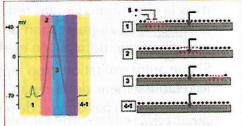


Schéma du PA avec sa traduction électrique

- (entre 1 et 2 : couleur jaune-clair) : temps de latence : correspond au temps que met l'influx nerveux pour arriver à l'électrode réceptrice
- (2 : couleur rose) phase de dépolarisation : l'onde de négativité arrive au niveau de l'électrode réceptrice. Celle-ci se charge négativement. Cela est traduit sur l'écran par une déviation du spot vers le haut.
- (3 : couleur bleu-clair) : phase de repolarisation : l'onde de négativité a dépassé l'électrode réceptrice. L'électrode retrouve sa polarité de départ.
- (4-1) : l'influx nerveux est déjà passé après une phase d'hyperpolarisation située dans la zone colorée en violet.

Sur le plan ionique

L'explication électrique vient de nous révéler que le PA s'obtient à la suite d'une inversion de la polarité à l'origine du PM.

La simulation provoque une modification passagère de la perméabilité membranaire de la fibre nerveuse.

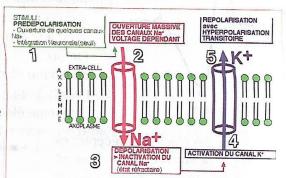
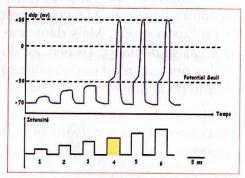


Schéma de l'explication ionique du PA


- D'abord les canaux à Na+ s'ouvrent. Les Na+ nombreux à l'extérieur rentrent brutalement à l'intérieur de la fibre. On obtient ainsi la phase de dépolarisation.
- Les canaux à Na⁺ se referment et ceux à K⁺ s'ouvrent à leur tour. Les ions K⁺ sortent brusquement de la fibre pour l'extérieur. C'est la phase de repolarisation.
- L'hyperpolarisation passagère est due à une sortie un peu trop importante de K^+ .
- Quand les canaux K⁺ se referment, la polarisation est redevenue normale, mais la répartition des ions reste anormale (excès de Na⁺ interne et de K⁺ externe). Une augmentation de l'activité de la pompe Na⁺/K⁺ va rétablir une répartition normale en quelques millisecondes.
- Si une autre excitation (trop rapprochée de la première) est portée avant le rétablissement de la répartition normale des ions par la pompe, la fibre ne pourra pas donner de réponse. On dit qu'elle est dans sa période réfractaire.

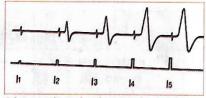
II.3. Les lois découlant de l'excitabilité du nerf

a) Loi du tout ou rien

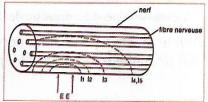
Si l'on porte des excitations d'intensités croissantes sur une fibre nerveuse, on obtient les résultats de la figure ci-contre.

- On remarque que les intensités 1, 2 et 3 sont insuffisantes pour permettre à la fibre d'atteindre son seuil d'excitabilité. Par conséquent il n'y a pas de PA généré par la fibre. On dit que les intensités 1, 2 et 3 sont infraliminaires.

Réponses d'une fibre nerveuse à des stimulations d'intensités croissantes


- L'intensité 4 est la plus petite tension qui permet d'obtenir un PA de la fibre nerveuse. Elle est dite liminaire.
- Les intensités 5 et 6 sont supérieures à l'intensité 4. Elles sont dites supraliminaires. Et pourtant, les PA générés par ces deux intensités ont la même amplitude que celui de l'intensité 4. D'où la loi ci-dessous.
- Avec une fibre nerveuse, soit il n'y a pas de réponse car l'intensité est infraliminaire ; soit il y a une réponse et elle est d'emblée maximale. C'est la loi du tout ou rien.

b) Loi de la sommation

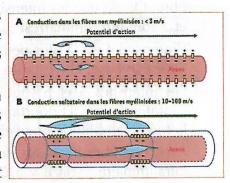

Si l'on porte des excitations d'intensités croissantes sur un nerf, on obtient les résultats de la figure ci-dessous.

A partir de l'intensité liminaire (l₂), on assiste à une augmentation de l'amplitude du PA nerveux au fur et à mesure qu'on augmente l'intensité de jusqu'à (l,).

A partir de l'intensité (I₄), l'amplitude du PA n'augmente plus. On a alors la loi suivante : le nerf étant constitué de plusieurs fibres nerveuses, il y a un mesure que les intensités augmentent. Plus l'intensité est forte plus des fibres nerveuses sont touchées phénomène de recrutement au fur et à

Réponses du nerf en fonction de stimulations stimulation d'intensités croissantes

L'amplitude du PA ne peut plus augmenterquand toutes les fibres nerveuses qui constituent le nerf ont été touchées. C'est la loi de la sommation.


III. LA CONDUCTIBILITÉ DU NERF MINIMATIONE IL 1900 (1900 PAR 1910 PAR 1910

L'influx nerveux qui naît suite à une excitation se déplace de l'électrode excitatrice (EE) jusqu'à l'électrode réceptrice (ER). Le nerf est donc **conducteur** de l'influx nerveux. Mais dans une zone lésée du nerf, l'influx nerveux ne peut pas se déplacer. Le nerf est donc différent d'un fil électrique ; et donc l'influx nerveux n'est pas du courant électrique. Sa vitesse est différente de la célérité de la lumière. La vitesse de l'influx nerveux s'obtient par la formule $v = \frac{d}{d}$.

La vitesse de l'influx nerveux est influencée par le diamètre et le type de fibre nerveuse.

III.1. Le type de fibre

- Dans une fibre sans myéline, les déplacements de charge se font de proche en proche. C'est la théorie des courants locaux. La vitesse est faible.
- Dans une fibre myélinisée, le manchon de myéline sert d'isolant. Les échanges de charge « sautent » d'un nœud de Ranvier à l'autre. C'est la théorie de la conduction saltatoire. La vitesse ici est plus élevée.

La vitesse dépend du type de fibre

III.2. Le diamètre de la fibre

Fibres	Diamètre en um	Température	Vitesse En m.s ⁻¹
Fibre myélinisée de grenouille	10	20	17
Fibre myélinisée de grenouille	20	20	30

La vitesse dépend du diamètre de la fibre

Pour le même type de fibre nerveuse donnée (fibre myélinisée de grenouille), plus le diamètre est important plus la vitesse est élevée.

LEÇON 2 : LE PASSAGE DE L'INFLUX NERVEUX AU **NIVEAUX DES SYNAPSES**

Entre deux cellules nerveuses il n'y a pas de continuité ; uniquement de simples contiguïtés établissant des synapses.

I. STRUCTURE D'UNE SYNAPSE

Photo d'une synapse

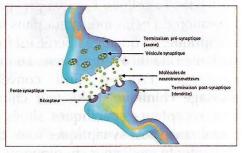
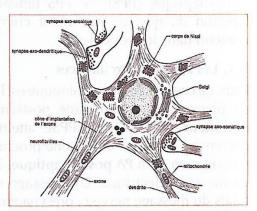



Schéma d'une synapse

L'influx nerveux se déplaçant du corps cellulaire vers l'axone, c'est au niveau des terminaisons axonales que s'établissent les synapses. On en trouve quatre types:

- L'arborisation terminale d'un neurone peut rencontrer les dendrites d'un autre neurone. On a une synapse axo-dendritique.
- L'arborisation terminale d'un neurone peut rencontrer le corps cellulaire (soma) d'un autre neurone. On a une synapse axosomatique.
- L'arborisation terminale d'un neurone peut rencontrer l'axone d'un autre neurone. On a une Schéma des différents types de synapses synapse axo-axonique.

L'arborisation terminale d'un neurone peut rencontrer une fibre musculaire. On a une plaque motrice.

II. FONCTIONNEMENT DE LA SYNAPSE

Quand l'influx nerveux arrive à l'extrémité d'une arborisation terminale, il doit franchir la synapse avant d'être transmis à d'autre neurones.

Une substance appelée neuromédiateur ou neurotransmetteur ou médiateur chimique est accumulée dans des vésicules synaptiques de la terminaison axonale (neurone présynaptique).

Quand le PA arrive au niveau du bouton synaptique, il provoque une entrée de Ca²+ dans la cellule. Ceci va provoquer la libération du neuromédiateur dans la fente synaptique. La quantité libérée est fonction de l'intensité du PA qui arrive. Le message électrique (PA) est ainsi converti en message chimique (médiateur chimique). Des récepteurs spécifiques situés sur la membrane post-synaptique sont chargés de capter le médiateur chimique.

Sur le neurone post-synaptique, le médiateur chimique modifie la perméabilité de sa membrane et engendre un **potentiel postsynaptique (PPS)**. Le PPS obtenu est fonction du type de médiateur chimique contenu dans les vésicules.

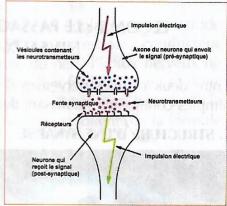


Schéma de la transmission synaptique

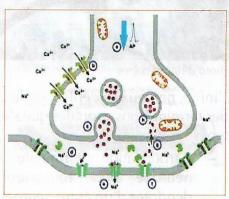


Schéma du fonctionnement d'une synapse

II.1. Les synapses excitatrices

Dans ce cas le médiateur chimique est l'acétylcholine (ACH). L'ACH provoque au niveau de la membrane postsynaptique un potentiel postsynaptique excitateur (PPSE). Si le PPSE atteint une valeur suffisante, ou seuil, il déclenche à la base de l'axone proche du corps cellulaire la naissance et la propagation d'un PA postsynaptique. Le message chimique est ainsi converti en message électrique. Un message nerveux postsynaptique a ainsi pris le relais du message nerveux présynaptique.

Lorsque le PA présynaptique cesse, le neurotransmetteur n'est plus libéré dans la fente synaptique. Les molécules qui étaient liées aux récepteurs sont libérées dans la fente synaptique et détruites par une enzyme nommée acétylcholinestérase (ACHase). Ainsi prend fin la transmission du message nerveux au niveau de la synapse.

16

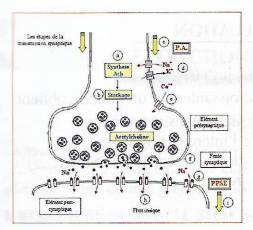
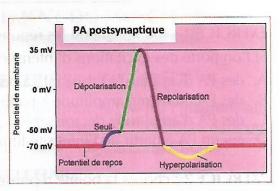



Schéma du fonctionnement de la synapse excitatrice

La naissance du PA postsynaptique à partir du PPSE

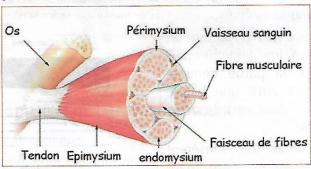
II.2. Les synapses inhibitrices

Dans ce cas le médiateur chimique est de l'adrénaline (ADR) ou de la noradrénaline, ou toute substance de la classe des catécholamines (dopamine, etc.)

La libération de ces substances dans la fente synaptique entraine une hyperpolarisation de la membrane postsynaptique. On obtient ainsi un potentiel postsynaptique inhibiteur (PPSI). Ce qui entraine une absence de PA postsynaptique.

TESTS D'ÉVALUATION

A. des PA d'amplitude croissantB. des PA de même amplitude à	tensités croissantes sur un nerf, on obtient te à partir de l'intensité liminaire ; à partir de l'intensité liminaire ; ante à partir de l'intensité liminaire ;
EXERCICE 2 : choisis la bonne re Pour 2 fibres nerveuses myélinis A. plus élevée chez la fibre ayar B. plus élevée chez la fibre ayar C. la même quelque soit la taill	ées, la vitesse de l'influx est : nt le plus petit diamètre ;
EXERCICE 3 : coche la ou les bo Une intensité de stimulation qua A. une intensité liminaire ; B. une intensité infraliminaire ; C. une intensité supraliminaire D. une intensité non convention	onnes réponse(s). i donne une réponse du nerf est : ; onnelle.
EXERCICE 4 : Choisis les bonne La vitesse de l'influx nerveux e A. la fibre est sans myéline ; B. la fibre est myélinisée ; C. la fibre a un gros diamètre ; D. la fibre a un petit diamètre.	st plus importante quand :
CORRI	GÉ D'ÉVALUATION
EXERCICE 1 A.	EXERCICE 3
EXERCICE 2 B.	EXERCICE 4 B. et C. ~~ SVT ~~


THÈME 2 LE FONCTIONNEMENT DU MUSCLE

LEÇON: LE MUSCLE STRIÉ SQUELETTIQUE

Le muscle strié squelettique est par définition le muscle qui, par l'intermédiaire du tendon, se fixe au squelette et permet le mouvement de celui-ci dans une direction bien définie grâce à sa fonction essentielle de contraction.

I. STRUCTURE DU MUSCLE STRIÉ SQUELETTIQUE

I.1 Morphologie

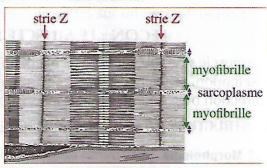
1.2 Structure microscopique

• Au microscope photonique

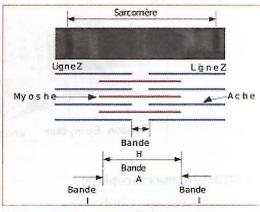
Les fibres musculaires sont de longs cylindres mesurant 1/10 de millimètre à plusieurs centimètres de longueur. Elles contiennent chacune plusieurs noyaux disposés à leur périphérie.

Une cellule musculaire apparait striée aussi bien longitudinalement que Fibres musculaires (rhabdomyocytes) transversalement, d'où le nom de fibre striée utilisé pour désigner les muscles rouges squelettiques.

La striation longitudinale est due à l'existence, à l'intérieur du cytoplasme de myofibrilles qui sont constituées d'une alternance de bandes claires et sombres.

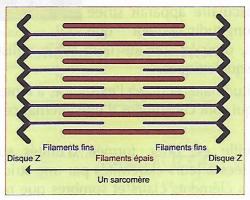

Chaque myofibrille est donc formée d'unités successives appelées sarcomères, limitées à leurs extrémités par une strie Z. Entre deux strie Z se trouvent des éléments clairs et sombres que nous allons appeler «

disques » en microscopie optique et plus tard « bandes » en microscopie électronique. C'est cet alignement de stries Z qui donne une apparente régularité des stries transversales sur les myofibrilles.


Au microscope électronique

La microscopie électronique nous permet d'affiner les observations faites au microscope optique et de découvrir que :

- les bandes claires sont constituées de filaments fins, tandis les bandes sombres montrent à la fois des filaments fins et filaments épais.
- entre deux strie Z formant un sarcomère, les filaments épais occupent la partie centrale constituant ainsi une bande sombre donc anisotrope (bande A).
- les filaments fins s'insèrent sur les strie Z constituant une bande claire dite alors isotrope ou bande I, et s'infiltrent entre les filaments épais de la banda A.

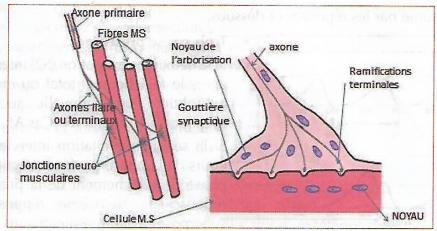

Fibre musculaire (microscopie électrique)

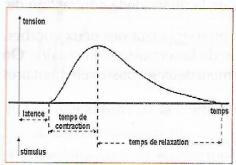
Organisation d'une myofibrille

Au centre de la bande A on distingue une zone plus claire où il n'y a que la présence des filaments épais : c'est la bande H.

Les myofibrilles qui composent une fibre musculaire sont ainsi constituées par des sarcomères successifs.

Les muscles striés squelettiques assurent le déplacement du corps grâce à leurs contractions. Dans l'organisme l'excitant physiologique du muscle est le nerf. Les muscles sont ainsi reliés à des nerfs aux niveaux de synapses spéciales que l'on appelle les plaques motrices.




Schéma d'unité motrice et d'une Plaque motrice

II. LES MANIFESTATIONS DE L'ACTIVITÉ MUSCULAIRE

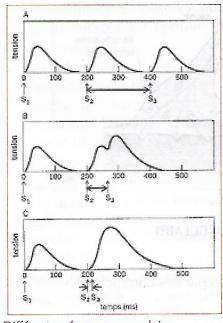
II.1 Les aspects mécaniques

Le muscle répond à des excitations efficaces par des contractions.

a) Réponse a une excitation unique

La réaction normale du muscle à une excitation est une contraction brève, isolée, appelée secousse musculaire élémentaire. La secousse musculaire peut-être décomposer en trois parties :

Secousse musculaire élémentaire


- Le temps de latence : il est compris entre le moment de l'excitation et celui du début de la réponse.
- La période de contraction : correspond au moment où la longueur du muscle décroit régulièrement alors que la tension croit.
- La période de décontraction ou relâchement : elle marque le moment où le muscle reprend ses dimensions initiales. Sa durée est légèrement supérieure à celle de la contraction.

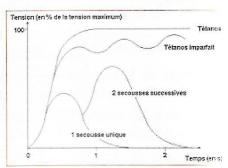
b) Réponses a plusieurs excitations.

Quand le muscle subit plusieurs excitations, sa réponse est fonction de moments où surviennent ces différentes excitations.

b) 1. Cas de deux excitations

Il est résumé par les réponses ci-dessous.

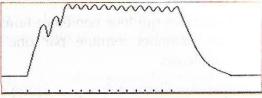
Différentes réponses musculaires

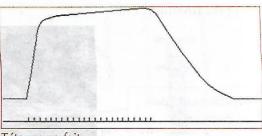

Trois cas se présentent :

- Si la deuxième excitation (S2) intervier après le relâchement total du musclon on obtient une nouvelle secousidentique à la première. (Cas A).
 - Si la seconde excitation intervient a cours de la phase de décontraction or phase de relâchement de la première réponse, la deuxième réponse superpose à la première sans que y ait confusion des deux courbe On distingue ainsi deux somme montrant clairement deux secousse élémentaires incomplèteme fusionnées. (Cas B)
 - Si la seconde excitation intervient cours de la phase de la contraction (

la première réponse, il y a superposition et prolongement des deux courbe La tension totale créée est supérieure à celle de la secousse élémentaire. (distingue un sommet unique montrant clairement deux secousses élémentair complètement fusionnées. (Cas B)

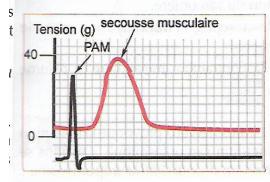
b) 2. Cas de plusieurs excitations rythmées


La muscle donnera une réponse selon que les excitations l'atteignent en phase de contraction ou de relâchement.



Explications schématiques des réponses

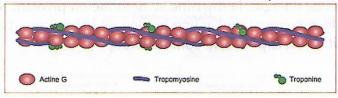
Deux cas se dégagent donc :


- Si les excitations sont bien rythmées et surviennent pendant les phases de relâchement du muscle, on obtient une série élémentaires secousses incomplètement fusionnées qui Tétanos imparfait finissent par un plateau sinueux. nt Il s'agit d'un tétanos imparfait. ١,
- Si les excitations sont bien rythmées et surviennent pendant u les phases de contraction du u muscle, on obtient une série élémentaires e secousses complètement fusionnées qui Tétanos parfait e

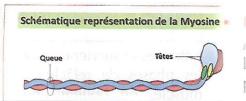
finissent par un plateau rectiligne. Il s'agit d'un tétanos parfait.

II. 2 Les aspects électriques

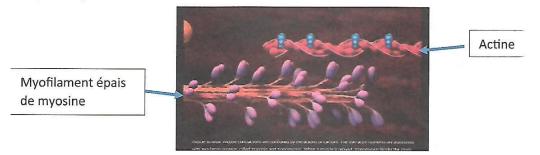
À partir d'expérience, on a pu enregistrer un potentiel de membrane (PM) de l'ordre de 80 millivolts entre l'intérieur et l'extérieur de la fibre musculaire. Ainsi assiste-t-on à l'existence d'un potentiel d'action (PA) au cours d'une secousse musculaire.


II.3 Le mécanisme de la contraction musculaire

II.3.1 les myofilaments


Les filaments d'actine sont formés par la polymérisation d'actine globulaire, associée à deux autres protéines que sont la troponine et la tropomyosine.

La troponine est placée régulièrement le long du filament. Elle a la propriété de fixer fortement les ions Ca2+.


La tropomyosine s'intercale entre les molécules de troponine.

 Les molécules de myosine sont constituées par quatre chaînes protéiques qui leur confèrent la forme d'un bâtonnet terminé par une tête globuleuse.

Chaque myofilament épais est formé de nombreuses molécules de myosine disposées en quinconce, les têtes de myosine faisant saillie régulièrement le long du myofilament.

II.3.2 Le mécanisme de la contraction du sarcomère.

- Au repos : dans une myofibrille au repos, la tropomyosine cache le site d'attachement actine-myosine.
- En activité : le mécanisme de la contraction musculaire se résume en trois phase :

Phase d'attachement

L'excitation de la fibre musculaire par l'influx nerveux provoque la libération des ions Ca²⁺ accumulés dans le réticulum sarcoplasmique. Ces ions se fixent sur la troponine, qui se déforme en repoussant la tropomyosine le site d'attachement est libéré. Au même moment des molécules d'ATI (énergie) se fixent sur les têtes de myosine qui se déforment à leur tour e s'attachent à l'actine. C'est la formation du pont acto-myosine.

Phase de glissement

La myosine activée par l'actine, hydrolyse l'ATP selon l'équation ci dessous :

Grâce à cette énergie, la myosine se déforme en pivotant. Ce pivotement entraine le glissement de l'actine le long de la myosine. Le sarcomère se raccourcit. C'est la phase de contraction.

Phase de détachement

A ce stade le système est rigide et bloqué. Le retour à l'état initial nécessite le détachement de l'actine et de la myosine. Cela se fait grâce à deux phénomènes :

L'absorption active des ions Ca2+ par le réticulum sarcoplasmique ; La fixation d'une nouvelle molécule d'ATP sur la tête de myosine.

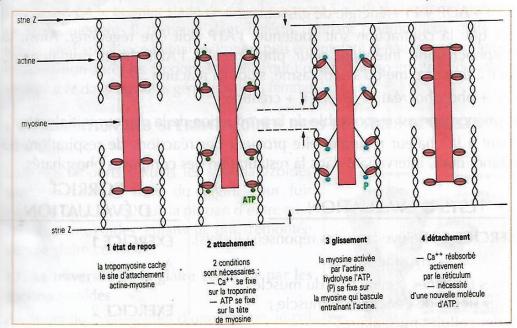
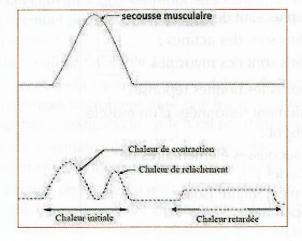



Schéma du mécanisme de la contraction

II.4 Les autres aspects

II.4.1 Les phénomènes thermiques.

Un muscle qui se contracte produit de la chaleur.

— Concours d'Entrée INFAS 2021

La courbe obtenue montre nettement deux types de chaleur : la chaleu initiale qui se produit au cours de la contraction, et à la chaleur retardée que survient après la contraction du muscle, de faible intensité mais de longu durée.

II.4.2 Les phénomènes chimiques

La fibre musculaire utilise de l'AT pour se raccourcir selon la réaction :

 $ATP \rightarrow ADP + Pi + énergie de glissement.$

Pour que la contraction soit soutenue, l'ATP doit être régénérer. Ainsi, l'phosphocréatine intervient pour phosphoryler l'ADP libéré initialement grâce à une enzyme du sarcoplasme, selon la réaction :

ADP + phosphocréatine → ATP + créatine

Ce phénomène est responsable de la production de la chaleur initiale.

Quant à la chaleur retardée, elle provient des réactions de respiration, or F métaboliques, intervenant dans la restauration des composés phosphatés.

TESTS D'ÉVALUATION

EXERCICE 1: Relève la ou les réponse(s) juste(s).

L'actine et la myosine sont :

- A. des protéines contractiles du muscle ;
- B. les sièges de l'énergie du muscle ;
- C. des cellules musculaires ;
- D. des secousses musculaires.

EXERCICE 2: Coche la ou les bonnes réponse(s).

Au niveau d'un sarcomère :

- A. les filaments épais sont des actines ;
- B. les filaments épais sont des myosines ;
- C. les filaments fins sont des actines ;
- D. les filaments fins sont des myosines.

EXERCICE 3: Choisis les bonnes réponses.

Les réponses totalement fusionnées d'un muscle en activité produisent :

- A. une séries de secousses élémentaires de mêmes amplitudes ;
- B. une secousse élémentaire isolée;
- C. un tétanos imparfait;
- D. un tétanos parfait.

CORRIGÉ D'ÉVALUATION

EXERCICE 1

A.

EXERCICE 2

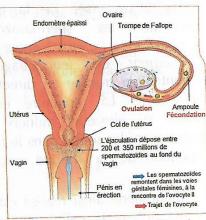
B. et C.

EXERCICE 3

D.

THÈME 3 LA REPRODUCTION HUMAINE

LEÇON 1: LA FORMATION DE L'EMBRYON CHEZ LA FEMME

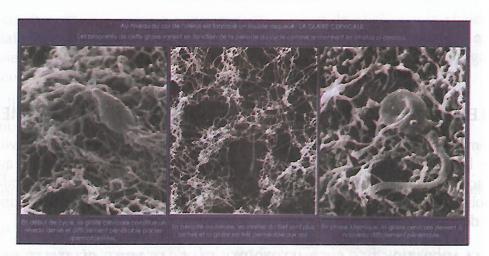

L'embryon est le premier stade de développement à partir de la première division de la cellule-œuf. Il demeure dans l'utérus pendant environ deux mois avant dacquérir l'apparence humaine (fœtus), puis enfant dont la naissance surviendra 9 mois environ après les rapports sexuels. Pour l'obtenir, les spermatozoïdes doivent se déplacer dans les voies génitales de la femme.

L LA MIGRATION DES SPERMATOZOÏDES DANS LES VOIES GÉNITALES DE LA OI FEMME.

des rapports sexuels les spermatozoïdes ont déversés au fond du vagin. Pour fuir dité du vagin qui tue la plupart d'entre eux, spermatozoïdes entament une remontée la glaire cervicale.

11. La traversée de la glaire cervicale par les permatozoïdes

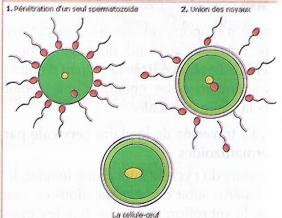
cours du cycle sexuel d'une femme, le col Lutérus subit des modifications en rapport Le la sécrétion de glaire par les glandes Levicales.

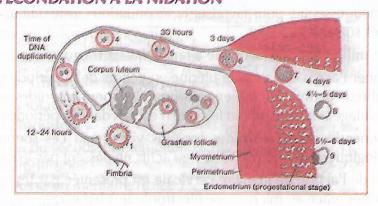


Trajet et rencontre des gamètes dans les voies génitales féminines

condance de la glaire ainsi que ses propriétés varient selon le jour du cycle.

Cest un facteur essentiel pour favoriser la fécondation car le mucus cervical a propriétés suivantes :


- Créer un milieu basique favorable à la vie des spermatozoïdes
- Condamner l'accès de la cavité utérine en dehors de la période ovulatoire.
 De nombreux germes microbiens ainsi que les spermatozoïdes sont arrêtés par le maillage très serré quand le cycle n'est pas dans sa période ovulatoire.
- Sélectionner les spermatozoïdes les plus vigoureux. Les spermatozoïdes morphologiquement anormaux ou peu actifs ne passent pas le maillage.
- Sustration de l'action de la glaire cervicale est présentée par les trois figures -- après réalisés grâce au microscope électronique à balayage.


1.2. La fécondation

Après la traversée de la glaire cervicale les spermatozoïdes franchissent l'utérus grâce au mouvement de leur flagelle, remontent la trompe en direction de l'ovule. La rencontre entre l'ovule et plusieurs milliers de spermatozoïdes se fait dans le tiers supérieur de la trompe appelé l'ampoule.

Le phénomène ainsi réalisé est la fécondation et la cellule obtenue les étapes de la fécondation après la fusion des deux noyaux estune cellule-œuf.

II. DE LA FÉCONDATION A LA NIDATION

Progression et maturation de l'œuf fécondé depuis la trompe vers l'utérus

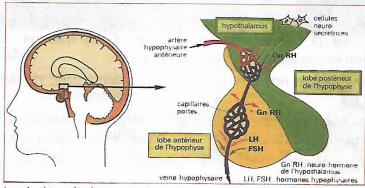
II.1. La migration de l'œuf

Après la fécondation dans la trompe, l'œuf est entraine vers l'utérus par le mouvement des cils qui tapissent la muqueuse tubulaire. Au cours de cette migration l'œuf subit des divisions. On obtient :

- le stade à deux cellules 30 heures environ après la fécondation ;
- le stade 4 cellules 48 heures après la fécondation ;
- Le stade morula 4 jours après la fécondation ;
- le stade blastula le 5^{ème} jour avec une cavité qui se creuse au milieu de l'amas cellulaire.

II.2. La nidation

Sept (7) jours après la fécondation, le blastocyste s'implante dans la muqueuse utérine. C'est la nidation ou implantation. Cette nidation nécessite une coopération étroite entre le blastocyste et l'utérus.

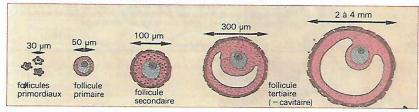

- Le blastocyste doit être nécessairement à un stade de développement précis.
- La muqueuse utérine doit être apte à recevoir le blastocyste en subissant une préparation à la nidation sous l'effet des hormones ovariennes.

NB. : On estime que, dans l'espèce humaine, plus de 40% des cellules œufs m'arrivent pas à s'implanter.

LEÇON 2: LES CYCLES MENSTRUELS CHEZ LA FEMME

I. LE CERVEAU CONTRÔLE LE FONCTIONNEMENT DE L'OVAIRE

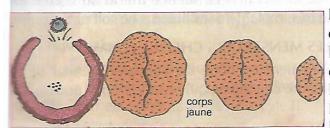
L'ovaire est l'organe producteur des ovules chez la femme. C'est donc une gonade. En produisant des gamètes qu'il expulse hors du milieu intérieue (sang), on dit que l'ovaire a une fonction exocrine. En plus des gamètes l'ovaire produit également des hormones ovariennes que sont l'estradiol et la progestérone qui empruntent la voie sanguine pour agir. On dit que l'ovaire a également une fonction endocrine. Ces deux fonctions attribuées à l'ovaire sont sous le contrôle du cerveau.



La sécrétion des hormones hypophysaires dépend de substances élaborées dans l'hypothalamus

L'hypothalamus agit sur l'hypophyse par l'intermédiaire d'une substance appelée **GnRH** Gonadotrophine Relasing Hormone). Une telle hormone produite par des cellules nerveuses, est appelée **neuro-sécrétion** ou **neuro-hormone**.

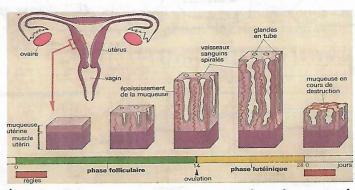
L'hypophyse sous l'action de la GnRH va produire deux types d'hormones dans le sang au niveau de son lobe antérieur. Il s'agit de la **FSH** (Hormone Folliculo-Stimulante) et de la **LH** (Hormone Lutéinisante). Ces deux hormones qui agissent sur les gonades (ovaires) sont alors appelées des **gonadostimulines** ou **gonadotrophines**.


1.1 Action de la FSH sur les ovaires

Formation des follicules ou folliculogenèse

Leffet de la FSH sur l'ovaire est caractérisé par un développement folliculaire. Un ou plusieurs follicules primordiaux (ovocyte II entouré de quelques cellules folliculaires) s'entourent d'une couronne de cellules folliculaires pour donner des follicules primaires. Puis les cellules folliculaires deviennent nebondantes et chaque follicule s'entoure d'une enveloppe externe : la thèque exertene. On obtient ainsi un follicule secondaire. Une cavité se creuse à es intérieur du follicule pour donner un follicule cavitaire ou tertiaire. La cavité la agrandit jusqu'à entourer presque entièrement l'ovocyte II. On a alors un réollicule mûr prêt à libérer l'ovocyte II (l'ovule). Ce phénomène ainsi décrit rest appelé la folliculogenèse.

1.2 Action de la LH sur les ovaires


Rupture du follicule mûr et formation de corps jaune

La libération de la LH entraine au niveau de l'ovaire la rupture du follicule mûr et donc la libération de l'ovocyte II. C'est l'ovulation. L'ovocyte II sera happé par les pavillons de de la trompe

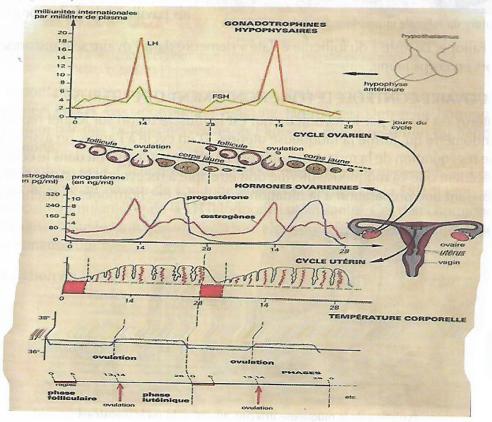
de Fallope. Le reste « du follicule éclaté » demeuré dans l'ovaire se transforme alors en corps jaune.

II. L'OVAIRE CONTRÔLE LE FONCTIONNEMENT DE L'UTÉRUS

L'utérus est formé par le myomètre qui est le muscle utérin sur lequel repose l'endomètre qui forme la muqueuse utérine. D'un cycle à l'autre, on assiste à une régénération de la muqueuse utérine. En effet nous avons dit dans le cours précédent que La muqueuse utérine doit être apte à recevoir le blastocyste en subissant une préparation à la nidation sous l'effet des hormones ovariennes.

Évolution de la muqueuse urtérine au cours du cycle menstruel

II.1 Action des œstrogènes (œstradiol) sur l'utérus


Les œstrogènes agissent sur l'utérus en épaississant sa muqueuse. On assistators à un important développement des glandes qui deviennent tortueuse et ramifiées avec une importante sécrétion de glycogène. Ce développement des glandes s'accompagne d'une importante irrigation sanguine traduit par une spiralisation poussée des artérioles. A la fin on obtient une sorte d'dentelle. On parle de **dentelle utérine**.

II.2 Action de la progestérone sur l'utérus

La progestérone continue l'œuvre d'épaississement de l'utérus commencé par les œstrogènes. En plus de ce rôle, la progestérone agit sur l'utérus pou faire cesser les contractions de ce dernier. Le silence utérin ainsi créé es nécessaire pour que l'œuf une fois implanté dans l'utérus ne soit pas expulsé

III. RÉGULATION DES CYCLES MENSTRUELS CHEZ LA FEMME

Pour comprendre le fonctionnement cyclique de l'appareil génital de le femme, il suffit de bien comprendre ce schéma qui résume ce que nous avon évoqué auparavant.

Sur ce schéma on voit que c'est le même évènement d'une durée de 28 jours sistement se répète. D'où la notion de cycle. Ici il s'agit d'un cycle menstruel c'est-ise-dire un cycle qui part d'une menstrue (règles) à une autre menstrue. Il est er calqué sur le cycle de la gonade qui est l'ovaire. On peut donc subdiviser le uit cycle ovarien en trois phases essentielles.

d III.1 La phase folliculaire

C'est la phase pendant laquelle se produit la folliculogenèse sous l'effet de la FSH. Le follicule en se développant produit des œstrogènes au niveau de sa thèque interne. D'où le taux d'æstrogènes qui augmente au fur et à mesure é pour atteindre un pic vers le 13 ème jour. Pendant cette phase, l'endomètre u commence son épaississement sous l'action des œstrogènes. La température du corps pendant cette période est en dessous de 37 oc. On dit que les é œstrogènes sont des hormones hypothermisantes.

III.2 L'ovulation

Elle correspond à la libération de l'ovocyte II (l'ovule). Le 13^{ème} jour du cycle, le taux de LH augmente brusquement dans le sang. Il provoque la rupture du follicule mûr et la libération de l'ovocyte II.

III.3 La phase luteinique

C'est la phase pendant laquelle le corps jaune doit produire de la progestérone pour maintenir le silence utérin. Cette phase dure 13 à 14 jours. C'est le temps mis par le corps jaune pour dégénérer et devenir un corpus albicans si l'ovulation n'est pas suivie de fécondation. Les 7 premiers jours, le taux de progestérone atteint son maximum. Les 7 autres jours qui suivent le taux chute progressivement. Pendant cette phase, la température du corps passe au-dessus des 37 oc. On dit que la progestérone est une hormone hyperthermisante. 14 jours après l'ovulation, toutes les hormones sont à leur taux le plus bas. L'utérus est en déficit hormonal. En l'absence de progestérone, l'utérus reprend ses contractions. L'endomètre épaissi se décapite. Il y a donc desquamation de la muqueuse utérine. Ses débris mêlés de sang sont expulsés dehors. On obtient les règles ou menstrues.

NB: Le cas décrit ci-dessus est celui d'un cycle moyen (28 jours). Quand un cycle est long (30 à 32 jours) ou court (25 jours), c'est la phase folliculaire qui varie en durée. La phase lutéale est constante et dure 13 à 14 jours environs quel que soit le cycle.

III.4 Le rétrocontrôle ou feed-back

Nous avons vu que le cerveau (en amont) contrôle la production de hormones ovariennes (en aval). Mais l'ovaire également règle la productio des gonadotrophines par le cerveau. C'est ce qu'on appelle le **rétrocontrô**l ou **feed-back**. Par exemple, pendant les règles les taux d'œstrogène et d progestérone sont pratiquement nuls dans le sang. Ces taux faibles déclencher de manière réflexe la production de FSH de la part de l'hypophyse. C'est u feed-back positif. Par contre vers les 21 ièmes jours du cycle, le taux trop élev de progestérone et d'œstrogène combiné entraine un arrêt de production de gonadotrophines de la part de l'hypophyse. Ici le feed-back est négatif.

Consistent and All College and the state of the later of

L

34

e LECON 3: LA MAITRISE DE LA REPRODUCTION HUMAINE PAR 10 LES APPLICATIONS MODERNES DE DÉCOUVERTES le **SCIENTIFIQUES** JE

Un enfant si je veux, quand je veux » devrait être l'aboutissement de la maîtrise de la reproduction par l'homme. Malheureusement, l'existence de couples stériles atteste du niveau de difficulté pour maîtriser la procréation. Cependant la science a fait des progrès dans ce sens.

L LA PLANIFICATION DES NAISSANCES

Ele consiste à choisir une méthode de contraception. La contraception designe l'ensemble des moyens visant à empêcher qu'un rapport sexuel entraine une grossesse. Toutefois, selon l'OMS, la contraception désigne l'utilisation d'agents, de dispositifs, de méthodes ou de procédures pour diminuer la probabilité de conception ou l'éviter.

On peut les regrouper en trois groupes :

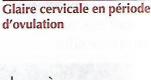
a) Les méthodes naturelles :

- L'abstinence périodique ou méthode d'Ogino knaus : Elle consiste à s'abstenir de rapport sexuel pendant la période d'ovulation.
- La prise de la température anale :

le passage brusque de la température de moins 37°C à plus de 37°C indique que l'on est en période d'ovulation

- 3. Aspect de la glaire cervicale :
 - il est épais avant et après l'ovulation, mais très tendre entre les doigts pendant la période d'ovulation.
- 4. Le coït interrompu:

Il consiste à retirer le pénis du vagin avant d'ovulation l'éjaculation


L'allaitement maternel exclusif (MAMA) :

Il empêche l'ovaire d'entamer une nouvelle folliculogenèse

b) Les méthodes mécaniques :

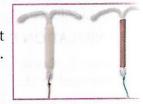
Les préservatifs

Les préservatifs masculin et féminin : placés au niveau de l'organe copulateur, ils recueillent le sperme pendant l'éjaculation.

Masculin

Féminin

2. Les barrières mécaniques : se placent au niveau du col de l'utérus


La cape cervicale

Le diaphragme

3. le stérilet :

Placé dans l'utérus, il irrite la muqueuse qui n'est plus apte à recevoir l'implantation de l'embryon.

c) Les méthodes chimiques :

1. La pilule contraceptive:

Ce sont des plaquettes de comprimés à base d'œstrogènes et/ou progestérone. En fonction de leurs molécules et de leurs concentrations, distingue trois types de pilules : les pilules combinées, les pilules séquentie et les micropilules. Elles agissent à trois niveaux :

- au niveau de l'hypophyse pour bloquer la libération de la LH. Donc d'ovulation;
- au niveau du col de l'utérus en rendant la glaire cervicale infranchissa par les spermatozoïdes ;
- au niveau de l'utérus en rendant la muqueuse impropre à la nidation

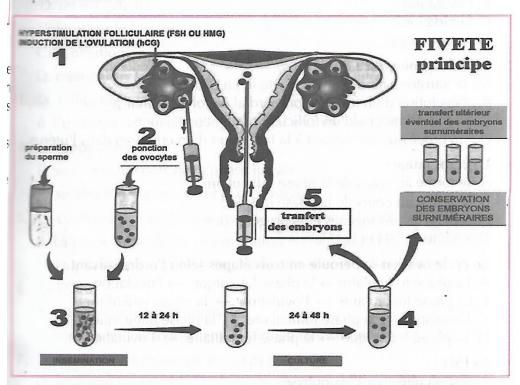
2. L'implant contraceptif:

L'implant est posé sous la peau de la femme. Il diffuse quotidiennement hormones ovariennes dans le sang. Le taux élevé d'hormones ovarient bloque le fonctionnement de l'hypophyse par feed-back négatif.

3. Les spermicides :

Ce sont des substances chimiques capables d'immobiliser ou de détruire spermatozoïdes.

Les progestatifs injectable


LA PROCRÉATION MÉDICALEMENT ASSISTÉE

L1 L'insémination artificielle

Ele consiste à déposer des spermatozoïdes dans la cavité utérine. Le sperme tilisé peut provenir du conjoint (IAC = Insémination Artificielle avec sperme Conjoint), ou d'un donneur (IAD). L'IAD est pratiquée quand il y a stérilité masculine ou risque génétique grave.

II.2 La fivete

La fécondation in vitro et transfert d'embryon (FIVETE) consiste à recueillir un ou plusieurs ovules chez une femme, à les féconder au laboratoire, puis à transplanter quelques jours plus tard, un œuf fécondé dans l'utérus. La FIVETE s'applique aux patientes qui ont une stérilité tubaire que la chirurgie peut résoudre.

TESTS D'ÉVALUATION

Pour chacun des items suivants, il peut y avoir une ou plusieurs réponses correctes. Relève la ou les réponse(s) correcte(s).

1. Le gamète femelle émis au moment de l'ovulation est :

- A. un spermatocyte;
- B. un ovocyte I;
- C. une ovogonie;
- D. un ovocyte II.

2. L'utérus est le lieu de :

- A. la fécondation;
- B. l'ovulation;
- C. la nidation;
- D. menstruation.

3. Folliculogenèse est:

- A. la transformation d'une ovocyte II en ovule ;
- B. l'évolution d'un follicule primordial en follicule mûr;
- C. la transformation d'un follicule mûr en corps jaune ;
- D. un processus conduisant à la formation d'un embryon dans l'utérus.

4. Le corps jaune :

- A. se forme au cours de la phase folliculaire ;
- B. se forme au cours de la phase lutéale ;
- C. sécrète les œstrogènes et la progestérone ;
- D. sécrète la FSH et la LH.

5. Le cycle ovarien se déroule en trois étapes selon l'ordre suivant :

- A. La phase folliculaire \rightarrow la phase lutéinique \rightarrow l'ovulation
- B. La phase folliculaire → l'ovulation → la phase lutéinique
- C. L'ovulation \rightarrow la phase folliculaire \rightarrow la phase lutéinique
- D. La phase lutéinique → la phase folliculaire → l'ovulation

6. La FSH:

- A. est sécrétée par l'hypophyse
- B. est sécrétée par les ovaires
- C. stimule le développement des follicules ovariens
- D. stimule le développement du corps jaune

7. La durée de vie moyenne du corps jaune est :

- A. une heure
- B. un jour
- C. quatre jours
- D. quatorze jours

Les gonadostimulines sont :

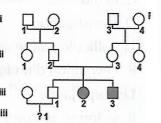
- A. des hormones produites par des gonades
- B. la FSH et la LH
- C. les œstrogènes et la progestérone
- D. des hormones produites par l'hypothalamus

CORRIGÉ D'ÉVALUATION

Pour chacun des items suivants, il peut y avoir une ou plusieurs réponses correctes. Relève la ou les réponse(s) correcte(s).

- 1. Le gamète femelle émis au moment de l'ovulation est :
 - D. un ovocyte II
- 2. L'utérus est le lieu de :
 - C. la nidation
 - D. menstruation
- 3. la folliculogenèse est :
 - B. l'évolution d'un follicule primordial en follicule mûr
- 4. Le corps jaune :
 - B. se forme au cours de la phase lutéale
 - C. sécrète les œstrogènes et la progestérone
- 5. Le cycle ovarien se déroule en trois étapes selon l'ordre suivant :
 - B. La phase folliculaire \rightarrow l'ovulation \rightarrow la phase lutéinique
 - D. La phase lutéinique \rightarrow la phase folliculaire \rightarrow l'ovulation
- 6. La FSH:
 - A. est sécrétée par l'hypophyse
 - C. stimule le développement des follicules ovariens
- 7. La durée de vie moyenne du corps jaune est :
 - D. quatorze jours
- 8. Les gonadostimulines sont :
 - B. la FSH et la LH

THÈME 4 **GÉNÉTIQUE**


LEÇON 1 : TRANSMISSION D'UN CARACTÈRE DANS L'ESPÈCE HUMAINE

Dans l'espèce humaine, les croisements ne donnent pas suffisamment de descendances pour effectuer des statistiques. Pour étudier l'hérédité, on se sert de l'arbre généalogique de l'individu qu'on appelle un pédigrée. Sur un pédigrée, les hommes sont représentés par des carrés, et les femmes par des ronds. Les malades sont colorés, hachurés ou portent des croix. Les individus qui n'ont aucun de ces traits cités sont sains.

I. ANOMALIE LIÉE À UN ALLÈLE AUTOSOMAL RÉCESSIF

Exemple: l'albinisme

L'albinisme est une déficience héréditaire. Elle se caractérise par une absence de pigmentation de la peau, des yeux et des poils en raison de l'absence pigment : la mélanine (voir pédigrée ci-contre).

Analysons le pédigrée :

1. Deux individus apparemment sains (II2 et II3) donnent naissance à des individus III2 et III3 malades. La maladie était donc cachée chez les parents. Elle ne pouvait pas s'exprimer chez eux parce que masqué par l'allèle normal beaucoup plus fort. On dit que l'allèle responsable de l'albinisme est récessif tandis que l'allèle normal est dominant.

Choix de symboles:

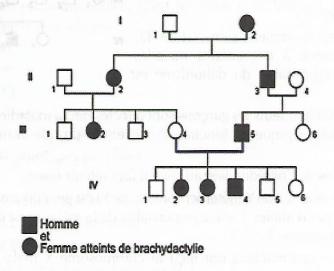
Albinisme : a Normal : A

Couple d'allèles : A/a

2. L'anomalie affecte aussi bien les femmes que les hommes sans faire de distinction. L'allèle responsable de l'albinisme est porté par un autosome

Les génotypes sont :

- Tous les individus albinos ont le génotype a//a. ils sont homozygotes (III2 et III3)
- Les parents qui ont donné naissance à des albinos ont le génotype A//a. ils sont hétérozygotes (II2 et II3)


Les autres individus du pédigrée sont soit : a//A ou A//A

ANOMALIE LIÉE À UN ALLÈLE AUTOSOMAL DOMINANT

Ememple: la brachydactylie

La brachydactylie est maladie héréditaire. Les personnes atteintes par cette tare ont des doigts ou des orteils anormalement courts.

Généalogie - brachydactylie - maladie déterminée par un allèle dominant

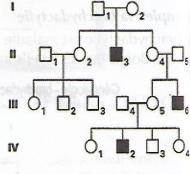
Analysons:

- 1. Ici également on constate que la maladie affecte aussi bien les femmes que les hommes. L'allèle responsable de la maladie est porté par un autosome
- 2. Remarque bien : chaque fois qu'un individu est malade, forcément un de ses parents est malade. L'allèle responsable de la maladie est dominant. L'allèle normal est récessif.

Symboles:

Normal : n Brachydactylie : N Couple d'allèle : N/n

- 2. Tous les individus sains sont homozygotes n//n
- Pour les individus malades il faut faire le raisonnement pour les déterminer.
 Dans notre cas ici on voit bien qu'ils sont tous hétérozygotes N//n; car à chaque fois on voit qu'un des parents est sain donc forcément homozygote n//n


III. CAS DE L'HÉRÉDITÉ LIÉE AU SEXE

Exemple : le daltonisme

Le daltonisme est une anomalie de vision des couleurs. L'individu atteint confond le vert et le rouge. Le pédigrée d'une famille où sévit cette maladie est représenté ci-dessous.

Analysons le pédigrée :

- Des parents apparemment sains (I1 et I2) vidonnent naissance à des enfants malades (II3). L'allèle responsable du daltonisme est récessif
- 2. On remarque ici que seuls les garçons sont affectés par la maladie. Il ya un ségrégation phénotypique en fonction du sexe. On dit que la maladie es liée au sexe.
- 3. NB : dans le cas de l'hérédité liée au sexe il faut retenir que :
 - a. Le chromosome sexuel Y (hétérochromosome Y) est génétiquement inert (il ne porte pas d'allèle). L'allèle responsable de la maladie est donc porte par le chromosome X.
- b. Tous les garçons malades ont reçu le chromosome X malade de leu maman.
 - c. Un père malade transmet son chromosome X malade à ses filles.

LEÇON 2 : TRANSMISSION DU GROUPE SANGUIN DANS L'ESPECE HUMAINE

LE GROUPE ABO

- e groupe sanguin ABO ou ABZ (Z comme Zéro), est contrôlé par un gène stant sous plusieurs allèles. C'est un gène polyallélique. Dans le système D le gène a trois allèles.
- L'allèle A
- L'allèle B
- L'allèle O

Chaque individu ne peut porter que 2 de ces allèles sur sa paire de chromosome homologue Nº 9.

donc 6 génotypes possibles :

B//B

O//O

A//B

A//O et

B//O

Les allèles ne s'expriment pas de la même façon :

- A et B sont codominants
- A et B dominent O

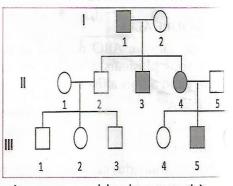
Les phénotypes obtenues sont alors 4 :

- A//A et A//O donnent le groupe sanguin A
- B//B et B//O donnent le groupe sanguin B
- A//B donne le groupe sanguin AB
- O//O donne le groupe sanguin O

II. LE FACTEUR RHÉSUS

Dans les transfusions sanguines, en plus du groupe ABO, il faut tenir compte d'un deuxième gène qui est le facteur rhésus. Ce gène n'est pas polyallélique. In'a que deux allèles.

- Rh+ si l'individu possède le facteur rhésus sur ses hématies
- Rh- si l'individu ne possède pas de facteur rhésus
- Rh+ domine Rh-


Ce gène est responsable des maladies hémolytiques du nouveau-né (grossesses avortées avant terme). Cela arrive quand une femme de rhésus négatif épouse un homme de rhésus positif à cause des défenses immunitaires développées par la maman contre le fœtus.

TESTS D'ÉVALUATION

Exercice 1:

La phénylcétonurie est une affection rare liée à une perturbation du métabolisme d'un acide aminé : la phénylalanine.

Dans l'organisme normal, cet acide aminé se transforme en tyrosine sous l'action d'une enzyme : la phénylalanine hydroxylase (E) phénylalanine (E) tyrosine Chez le malade, cette enzyme manque

par suite d'une mutation affectant le gène responsable de sa synthèse, conséquence la phénylalanine s'accumule dans le sang et entraîne de grav troubles psychomoteurs.

L'arbre généalogique suivant présente la transmission de cette maladie da une famille.

A partir de l'analyse du pédigrée, cochez la réponse exacte par rapport à phénylcétonurie.

- 1. L'affection est:
 - A. héréditaire :
 - B. récessive:
 - C. liée au sexe.
- 2. Les individus ci-dessous sont homozygotes:

II4 Vrai

Vrai

Faux

115

Faux

II2 Vrai

Faux

III5 Vrai

Faux

Exercice 2:

Une femme daltonienne s'unit à un homme non daltonien.

Sachant que le caractère daltonien est déterminé par un allèle récessiporté par le chromosome X. Choisis, la/les affirmation(s) exacte(s) parmi le propositions suivantes.

Le couple peut avoir :

A. un garçon sain

- B. une fille saine
- C. un garçon daltonien
- D. une fille daltonienne

Exercice 3:

Choisis la ou les bonnes réponses.

Un individu de groupe sanguin 0, Rhésus positif (0+) :

- A. peut recevoir du sang de tout le monde
- B. peut recevoir du sang des individus 0, Rhésus négatif (0-)
- C. peut donner son sang à tout le monde
- D. peut donner son sang uniquement aux individus 0, Rhésus positif.

Exercice 4:

Choisis la ou les bonnes réponse(s)

- La maladie hémolytique du nouveau-né survient quand :
- A: une femme de rhésus négatif épouse un homme de rhésus positif.
- 3 : une femme de rhésus négatif épouse un homme de rhésus négatif.
- C: une femme de rhésus positif épouse un homme de rhésus négatif.
- 🗅 : une femme de rhésus positif épouse un homme de rhésus positif.

CORRIGÉ D'ÉVALUATION

Exercice 1:

- 1. L'affection est :
 - 2. A. Héréditaire :
- 3. 2. Les individus ci-dessous sont homozygotes:

114		Vrai X		Faux
115	X	Vrai		Faux
112	X	Vrai		Faux
1115	In.	Vrai	X	Faux

Exercice 2:

Une femme daltonienne s'unit à un nomme non daltonien.

Sachant que le caractère daltonien est déterminé par un allèle récessif porté par le chromosome X. Choisis, la/les affirmation(s) exacte(s) parmi les propositions suivantes :

Le couple peut avoir

B- une fille saine

C- un garçon daltonien

Exercice 3:

Choisis la ou les bonnes réponses. Un individu de groupe sanguin 0, Rhésus positif (0+) : B-peut recevoir du sang des individus 0, Rhésus négatif (0-)

Exercice 4:

Choisis la ou les bonnes réponse(s) La maladie hémolytique du nouveauné survient quand :

A : une femme de rhésus négatif épouse un homme de rhésus positif.

THÈME 5

LEÇON 1 : LA DÉFENSE DE L'ORGANISME

I-LA RECONNAISSANCE DU « SOI » POUR LE DÉFENDRE

Le « soi » regroupe l'ensemble des motifs moléculaires de son propre organisme principalement les protéines libres ou fixées à la surface des cellules.

Le « non soi » représente tout motif moléculaire différent du soi, et donc potentiellement dangereux : molécules toxiques, molécules de la surface d'un virus, d'une bactérie ou de tout autre organisme étranger.

L'entrée dans le milieu intérieur, d'une structureétrangère déclenche deux modalités de réponses :

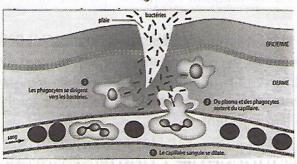
- •Un système de défense inné, permanent, prêt à agir immédiatement, avec l'inconvénient que ses armes sont généralisteset non destinées spécialement à un agresseur particulier. C'estla réponse immunitaire innée, non spécifique.
- •Un système de défense élaboré contre un agresseur particulier, et donc parfaitement ciblé et efficace. Mais sa mise en place est lente, elle demande au minimum une dizaine de jours. C'est la **réponse immunitaire spécifique**.

On appelle **antigène** toute molécule étrangère, libre ou portée par une cellule ou par une grosse particule, susceptible d'être reconnue par l'organisme. Il se caractérise par deux groupes de propriétés :

- -ll est capable de déclencher une réponse immunitaire : c'est l'immunogénicité
- -ll est capable de réagir de façon spécifique avec les éléments cellulaires ou humoraux (anticorps) de cette réponse : c'est la spécificité antigénique

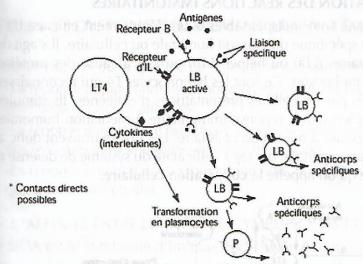
II- LA RÉPONSE IMMUNITAIRE NON SPÉCIFIQUE

Dans ce cas l'organisme n'a pas besoin de rencontrer au préalable avec l'antigène. C'est une réaction naturelle, innée mis en place par l'organisme quel que soit l'antigène donné.


II-1 : LES BARRIÈRES NATURELLES : LA PREMIERE LIGNE DE DÉFENSE DE L'ORGANISME

L'organisme dispose de remparts naturels s'opposant autant que possible à entrée d'agents étrangers. Il s'agit de la peau, les muqueuses, la sueur, les armes, la salive, etc.

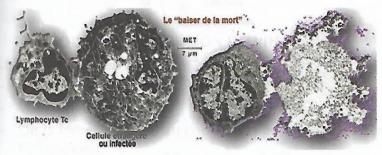
1-2: LA RÉACTION INFLAMMATOIRE


Quand la première ligne est franchise suite à une lésion des tissus, l'organisme et en place une série de mécanismes défensifs extrêmement complexes, constituant l'inflammation et se traduisant par une dilatation des vaisseaux anguins et une mobilisation de nombreux types de cellules (leucocytes colynucléaires, macrophages) et de molécules.

Quatre signes cliniques traduisent une inflammation : douleur, chaleur, rougeur, nonflement.

II-3: LA PHAGOCYTOSE

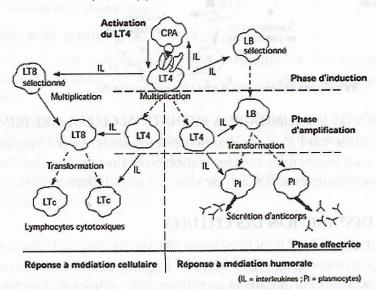
phagocytose est un phénomène essentiel des réponses immunitaires nnée et acquise. Les phagocytes sont des cellules capables de détruire en es englobant des microorganismes infectieux (virus, bactéries, cellules). Ce sont essentiellement les leucocytes polynucléaires, ou granulocytes, et es macrophages. Les leucocytes polynucléaires neutrophiles sont les agents essentiels de la réponse innée. Ils sont véhiculés par le sang, et sortent des aisseaux sanguins au niveau des zones infectées pour attaquer leurs cibles. Les macrophages, postés en attente au niveau des muqueuses, proviennent de la transformation des monocytes transportés par le sang. L'accolement (adhésion), l'ingestion (absorption), la digestion et le rejet des déchets sont les quatre phases de la phagocytose.


Principaux événements d'une réponse humorale

III-2: LA REPONSE IMMUNITAIRE A MEDIATION CELLULAIRE (RIMC)

Elle est caractérisée par l'absence d'anticorps circulants et par l'intervention de cellules détruisant leurs cibles sans les englober ou alors agissant sur l'ensemble des réactions immunitaires. Il s'agit de diverses populations de lymphocytes T LT).

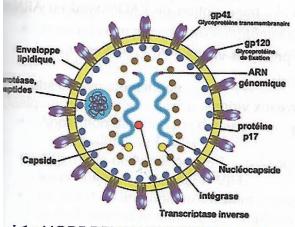
III-2-1: DESTRUCTION DES CELLULES


Certains lymphocytes T (LT8) activés se multiplient et donnent naissance à des lymphocytes T cytotoxiques (LTc). Les LTc libèrent des protéines (perforines) capables de créer des pores dans la membrane des cellules à éliminer une fois en contact avec celles-ci. Puis ils injectent une enzyme qui provoque la lyse des cellules cibles.

Destruction de la cellule étrangère par le LTc

III-2-2: RÉGULATION DES RÉACTIONS IMMUNITAIRES

Certains lymphocytes T sont indispensables à un déroulement efficace de le réponse immunitaire spécifique qu'elle soit humorale ou cellulaire. Il s'agit de lymphocytes T auxiliaires (LTa) ou helper (LTh) ou LT4 à cause des protéine T4 portées par ces lymphocytes. Ce sont les lymphocytes T4 qui reconnaissen les épitopes présentés par les cellules présentatrices d'antigènes. Ils stimulen alors les LB pour déclencher la réponse immunitaire à médiation humorale ou les LT8 pour la réponse à médiation cellulaire. Les LT4 se trouvent donc a centre d'une organisation parfaite qui régit l'efficacité du système de défense d'l'organisme. C'est ce qu'on appelle la **coopération cellulaire.**


Rôle central des lymphocytes

LEÇON 2 : DYSFONCTIONNEMENT DU SYSTÈME IMMUNITAIRE :

- existe trois cas où le système ne fonctionne pas correctement :
 - -La réponse immunitaire fonctionne en excès : C'est l'hypersensibilité qu'on note dans le cas des allergies.
 - -La réponse immunitaire est dirigée contre les cellules du « soi ». C'est le cas des maladies auto-immunes (ex. le diabète sucré)
- -La réponse immunitaire ne fonctionne plus. (ex. SIDA). C'est ce dernier cas eque nous allons étudier.

- L'AFFINITÉ ENTRE LE VIH ET LES LYMPHOCYTES T4

Le SIDA est le Syndrome d'Immuno Déficience Acquise (ou Syndrome mmunodéficitaire acquis). C'est un cas de déficience du système immunitaire. Le virus du SIDA est le VIH (virus de l'immunodéficience humaine) qui est un trus à ARN (rétrovirus) Structure du VIH:

I-1: MODE DETRANSMISSION DU VIH

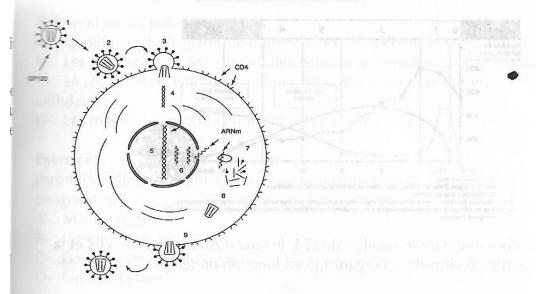
e VIH est transmis par :

Voie sexuelle,

Voie sanguine,

De la mère à l'enfant au cours de la grossesse, de l'accouchement ou de l'allaitement.

es cellules cibles du VIH sont principalement des cellules immunitaires : mphocytes T4, monocytes et macrophages. Les LT4 possèdent des protéines embranaires (Protéine CD4) qui ont une très grande affinité avec les Protéine 120 portées par le VIH. D'où la grande attraction entre les LT4 et le VIH.

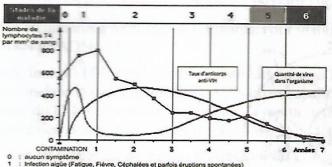

II- LA MULTIPLICATION DU VIRUS A L'INTERIEUR DU LT4.

Le VIH est un virus à ARN appelé rétrovirus. Pour se multiplier, il doit convert son ARN en ADN.

A l'intérieur du LT4, cette conversion se fait grâce à la transcriptase invers contenue dans la capside interne. L'ADN pro-viral ainsi obtenu est intégré a génome du LT4 et s'exprime, permettant la reproduction du virus sous form de particules virales infectieuses (les virions).

Les 10 étapes du processus d'infection du LT4 par le VIH :

- 1. Transport du virion.
- 2. Rencontre et reconnaissance spécifique GP120-CD4.
- 3. Fusion et injection de la capside virale dans le cytoplasme de la cellule hôte.
- 4. Transformation de l'ARN viral en ADN proviral (transcription inverse).
- 5. Insertion de l'ADN proviral dans l'ADN du LT4
- 6. Expression du génome viral : transcription de l'ADN viral en ARNT viral.
- 7. Traduction de l'ARNm en protéines virales.
- 8. Auto assemblage des capsides.
- 9. Bourgeonnement des nouveaux virions.
- 10. Destruction totale du LT4


III- DE L'INFECTION AU STADE DE SIDA MALADE

- La primo-infection (jusqu'à 3 mois):
 - La charge virale augmente fortement
 - Pendant cette période, les symptômes se limitent à ceux d'une maladie virale bénigne. L'individu est porteur mais pas de signes visibles.
- La phase asymptomatique.

Quelques mois après la contamination :

- Apparition dans le sang des anticorps anti-VIH. Le sujet est dit alors "séropositif pour le VIH".
- Apparition de lymphocytes T cytotoxiques spécifiques dirigés contre les cellules infectées par le VIH.
- les défenses immunitaires restent actives mais les virus continuent à se multiplier et le nombre de lymphocytes T4 à diminuer.
- Phase symptomatique : stade de SIDA maladie
 - Baisse de la quantité de LT4, du nombre de lymphocytes cytotoxiques et du nombre d'anticorps.
 - Augmentation de la quantité de virus dans le sang.
 - Développement des maladies opportunistes.

Le document suivant montre la variation du nombre des LT4, du taux d'Anticorps anti-VIH et de la quantité de virus en fonction du temps.

2 : Gonflements des ganglions, 3,4 : Mauvais fonctionnement du système immunitaire décelable par des tests d'hypersensibilité retardée.

 Signes cliniques de dysfonctionnement du système immunitaire au niveau de la peau et des muqueuses (muguet, herpès)

Courbes montrant le nombre de LT4, le taux d'Anticorps Anti-VIH et la quantité de virus dans l'organisme en fonction du temps

TESTS D'ÉVALUATION

Exercice 1

Cette série d'affirmations peut comporter une ou plusieurs réponses exactes Choisis la ou les affirmation(s) correcte(s).

Une réponse immunitaire à médiation humorale :

- A- Est une réponse non spécifique
- B- fait intervenir des anticorps transportés par voie sanguine
- C- a pour origine les lymphocytes B
- D- est activée par des sécrétions de lymphocytes T8

Exercice 2

On prélève :

- chez un individu malade des macrophages (M1),
- chez son vrai jumeau sain, des macrophages (M2), des lymphocytes B (LB) et des lymphocytes T (LT).

On réalise, avec ces cellules, des cultures dans lesquelles on recherche la présence de plasmocytes, cellules sécrétrices de gammaglobulines.

Culture1	Culture 2	Culture 3	Culture 4	Culture 5
Ajouts LB + M1	LT + M1	LB + LT	LB +LT +M1	LB+LT+M2
Plasmocytes	Aucun	Aucun	Aucun	Nombreux
Aucun				

- la ou les bonnes réponses
- La défense de l'organisme dans ce cas est à médiation cellulaire.
- Les macrophages M1 sont ici des cellules présentatrices d'antigènes
- La sécrétion de gammaglobulines nécessite une coopération de Julaire
- Les macrophages M2 détruisent les Lymphocytes T

Exercice 3

- les cellules suivantes, relève celle(s) capable(s) de pratiquer la pagocytose
- Macrophages
- B- Lymphocytes B
- Lymphocytes cytotoxiques
- D- Granulocytes

CORRIGÉ D'ÉVALUATION

Evercice 1:

- mporter une ou plusieurs réponses exctes. Choisis la ou les affirmation(s) execte(s).
- me réponse immunitaire à médiation morale :
- C-a pour origine les lymphocyte B

Exercice 2:

- B-Les macrophages M1 sont ici des cellules présentatrices d'antigènes
- C-La sécrétion de gammaglobulines nécessite une coopération cellulaire

Exercice 3:

- A-Macrophages
- D-Granulocytes