MINESEC Année scolaire 2019-2020 Epreuve de Mathématiques Lycée Bilingue de Bafia Classe : Tle C Coéfficient :5

Département de Mathématiques Contrôle $N^{o}4$ Durée : 4h

Exercice 1:

(4 points

Dans le plan orienté, on considère un triangle ABC isocèle tel que AB = AC et $(\overrightarrow{AB}; \overrightarrow{AC}) \equiv \frac{\pi}{4}[2\pi]$ et soit le point I tel que le triangle CAI soit un triangle rectangle et isocèle $(\overrightarrow{CA}; \overrightarrow{CI}) = -\frac{\pi}{2}[2\pi]$ et soit H le milieu de [BC]; J le milieu de [AI] et (Δ) la parallèle à (AB) passant par H.

a Soit r la rotation qui transforme A en I et B en C Déterminer son angle et construire son centre Ω .

0,5 pt

b Montrer que $AB\Omega C$ est un losange

- 0,5 pt
- Montrer qu'il existe un unique déplacement f et un unique antidéplacement g qui transforme A en Ω et B en C
- 0,5 pt

Onner la nature et les éléments caractéristiques de f

0,5 pt

- 4 Soit S la sumétrie d'axe (AB)
 - **a** Justifier que $g = f \circ S$

- 0,5 pt
- b En écrivant $f = S_{(\Delta)} \circ S_{(\Delta')}$ où (Δ') est une droite à préciser, déterminer nature et les éléments caractéristiques de g. **1**
- 5 Déterminer la nature et les élément caractéristique de $r^{-1} \circ g$ et $r^{-1} \circ f$

1 pt

Exercice 2:

(4 points)

On pose pour $n \ge 1$, $U_n = \int_0^1 \frac{1}{1+x^n} dx$

 \bigcirc Calculer U_1

0,25 pt

2 **a** Montrer que pour tout $x \ge 0, 1 - x^n \le \frac{1}{1 + x^n} \le 1$

0,75 pt

b En déduire que $1 - \frac{1}{n+1} \le U_n \le 1$

0,5 pt

c Déterminer la limite de la suite (U_n)

0,25 pt

- - **a** Montrer à l'aide d'une intégration par partie que $V_n = ln2 \int_0^1 ln(1+x^n)dx$

$$\left(\text{On pourra remarquer que } \frac{nx^n}{1+x^n} = \frac{nx^{n-1}}{1+x^n}x \right)$$

0,75 pt

b Démontrer que pour tout $t \ge 0$, $0 \le ln(1+t) \le t$

0,75 pt

0,5 pt

d En déduire que $\lim_{n \to +\infty} V_n = \ln 2$

0,75 pt

Problème

.. (12 points)

Partie A: $(O, \overrightarrow{i}; \overrightarrow{j})$ (unité graphique 5cm)

- On definit la fonction f sur $[-\frac{\pi}{2}; \frac{\pi}{2}]$ par f(x) = sinx
 - \mathbf{a} Etudier les variation de f et dresser son tableau de variation

0,5pt

b Montrer que f réalise une bijection vers un intervalle I à préciser

0.5pt

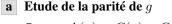
- 2 Soit g la fonction définie sur]-1;1[par $g(x)=\frac{1}{\sqrt{1-x^2}}$
 - ${\bf a} \quad \text{Montrer que } g \text{ est continue sur }]-1;1[$

. . .

0,25pt

\bigcirc Soit G la primitive de g qui prend la valeur 0 en 0

a Etudo do lo novitó do a



- On pose h(x) = G(x) + G(-x)
 - i. Montrer que h est continue et dérivable sur]-1;1[
- ii. Calculer la dérivée h' de h et h(0) pui déduire la parité de h **0,75pt**
- \mathbf{b} Bijection réciproque de f

Soit
$$\varphi$$
 la fonction définie sur $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$ par $\varphi(x)=G\circ f(x)-x$

- i. Montrer que la fonction φ est constante 0,5pt
- ii. Calculer $\varphi(0)$ puis conclure que $G \circ f(x) = x$
- iii. Conclure que G est la bijection réciproque de f 0,5pt

La fonction G ainsi définie est appellée la fonction arcsinus elle est notée arcsin

4 **a** Calculer G(1); $G(\frac{1}{2})$, $G(-\frac{\sqrt{3}}{2})$ et G(-1)

- **b** Etudier les variations de G et dresser son tableau de variation 0,5pt
- **c** Construire C_f et C_G dans le même repère.

Partie B:

Le plan complexe est muni du repère orthonormé $(O; \overrightarrow{i}; \overrightarrow{j})$. f est l'application du plan dans lui même qui à tout point M(z=x+iy) associe le point M'(z'=x'+iy') tel que $\begin{cases} x'=\frac{1}{2}x-\frac{1}{2}y\\ y'=\frac{1}{2}x-\frac{3}{2}y \end{cases}$

- 1) a Montrer que f est une application affine 0,25pt
 - **b** Déterminer l'écriture complexe de f 0,25pt
 - f c Déterminer la nature et les éléments caractéristiques de f
- 2 On note Ω le point ivariant de f
 - **a** Montrer que $\Omega M' = \frac{1}{2}\Omega M$
 - **b** Démontrer que le triangle $\Omega MM'$ est rectangle 0.5pt
- - a En utilisant la question précédente, Déterminer ΩM_n en fonction de n 0,75pt
 - **b** Placer le point M_0 construire M_1 , M_2 , M_3 et M_4 (On précisera la méthode de construction)
 - **c** Déterminer l'entier narurel n_0 tel que $\forall n \geq n_0$, M_n appartient au disque de centre Ω et de rayon r = 0,05
- 4 Pour tout entier naturel n, on pose $d_n = M_n M_{n+1}$ et $I_n = d_0 + d_1 + ... + d_n$
 - **a** Calculer M_0M_1
 - **b** Montrer que la suite (d_n) est géométrique; Préciser sa raison 0.5pt
 - **c** Calculer I_n en fonction de n puis calculer $\lim_{n \to +\infty} I_n$ 0,5pt
- 5 Pour tout entier naturel n non nul, on note G_n l'isobarycentre des points $M_0, M_1, ..., M_n$.
 - **a** Montrer que pour tout $n \ge 1$, $\Omega G_n \le \frac{16}{n+1}$
 - **b** En déduire la position limite du point G_n lorsque n tend vers $+\infty$ 0,25pt