A 2010 MATH II PC

ÉCOLE DES PONTS PARISTECH.

SUPAERO (ISAE), ENSTA PARISTECH,
TELECOM PARISTECH, MINES PARISTECH
MINES DE SAINT ÉTIENNE, MINES DE NANCY,
TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière PC).
ÉCOLE POLYTECHNIQUE (Filière TSI).

CONCOURS 2010

SECONDE ÉPREUVE DE MATHÉMATIQUES

Filière PC

(Durée de l'épreuve : trois heures) Sujet mis à la disposition des concours : Cycle international, ENSTIM, TELECOM INT, TPE-EIVP.

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :

MATHÉMATIQUES II - PC

L'énoncé de cette épreuve comporte 6 pages de texte.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Théorème de Rolle dans le cas complexe.

Dans ce problème on se propose de prouver l'analogue complexe suivant du théorème de Rolle :

Théorème 1. Soient a et b deux nombres complexes distincts et n un entier $\geqslant 2$. Soit $P(X) \in \mathbb{C}[X]$ un polynôme de degré n tel que P(a) = P(b). Le polynôme dérivé P'(X) de P possède alors au moins un zéro z_0 (ie $P'(z_0) = 0$) dans le disque

$$D_{a,b;n} = \left\{ z \in \mathbb{C}; \ |z - \frac{a+b}{2}| \leqslant R_n(a,b) \right\},\,$$

où

$$R_n(a,b) = \frac{|a-b|}{2} \frac{\cos(\frac{\pi}{n})}{\sin(\frac{\pi}{n})}.$$

Soit $P(X) = \sum_{l=0}^{N} u_l X^l \in \mathbb{C}[X]$, le polynôme dérivé P'(X) de P(X), est donné par :

$$P'(X) = \sum_{l=0}^{N-1} u_{l+1}(l+1)X^{l}.$$

Pour $k \in \{0, ..., n\}$, $\binom{n}{k}$ désigne le coefficient binomial $\frac{n!}{(n-k)! \, k!}$.

A. Définition de $A_zP(X)$.

On note $\mathbb{C}_n[X]$ l'espace vectoriel complexe des polynômes à coefficients complexes de degré inférieur ou égal à n. Soit $P \in \mathbb{C}_n[X]$ et $z \in \mathbb{C}$. On définit le polynôme $A_zP \in \mathbb{C}[X]$ par la formule :

$$A_z P(X) = (z - X)P'(X) + nP(X).$$

Cette définition de A_z dépend donc de l'espace de départ $\mathbb{C}_n[X]$.

- 1) Vérifier que A_z définit une application linéaire de $\mathbb{C}_n[X]$ vers $\mathbb{C}_{n-1}[X]$.
- 2) Soient $z_1, z_2 \in \mathbb{C}$ et $P \in \mathbb{C}_n[X]$. Prouver que :

$$A_{z_1}(A_{z_2}P)(X) = A_{z_2}(A_{z_1}P)(X),$$

où dans la composition $A_{z_1} \circ A_{z_2}$ (du membre de gauche), A_{z_2} est vu comme application de $\mathbb{C}_n[X]$ vers $\mathbb{C}_{n-1}[X]$ et A_{z_1} est vu comme application de $\mathbb{C}_{n-1}[X]$ vers $\mathbb{C}_{n-2}[X]$. Pareillement, dans la composition

 $A_{z_2} \circ A_{z_1}$ (du membre de droite), A_{z_1} est vu comme application de $\mathbb{C}_n[X]$ vers $\mathbb{C}_{n-1}[X]$ et A_{z_2} est vu comme application de $\mathbb{C}_{n-1}[X]$ vers $\mathbb{C}_{n-2}[X]$.

3) Pour $z \in \mathbb{C}$, déterminer l'ensemble des $P \in \mathbb{C}_n[X]$ tels que $A_z P(X)$ soit le polynôme nul. (On pourra utiliser la famille formée par les polynômes $(X-z)^k, 0 \leq k \leq n$). Déterminer alors l'image de l'application

$$A_z: \mathbb{C}_n[X] \mapsto \mathbb{C}_{n-1}[X].$$

4) Soit $z \in \mathbb{C}$. Déterminer les valeurs propres et sous espaces propres de l'endomorphisme \widehat{A}_z de $\mathbb{C}_n[X]$ défini par :

$$\forall P \in \mathbb{C}_n[X], \ \widehat{A_z}(P)(X) = (z - X)P'(X) + nP(X).$$

Montrer que \widehat{A}_z est diagonalisable.

5) On conserve les notations de la question précédente. Soit E un endomorphisme de $\mathbb{C}_n[X]$ commutant avec \widehat{A}_z . Montrer qu'il existe $Q \in \mathbb{C}_n[X]$ tel que $Q(\widehat{A}_z) = E$. (On pourra utiliser un polynôme associé à une interpolation de Lagrange convenable).

B. Définition de δ_{ξ} .

On considère la bijection f:

$$\begin{array}{ccc} f:\mathbb{C}\setminus\{0\} & \longrightarrow & \mathbb{C}\setminus\{0\} \\ z\in\mathbb{C}\setminus\{0\} & \mapsto & \frac{1}{z}=f(z) \end{array}$$

On se place dans le plan euclidien \mathbb{R}^2 identifié à \mathbb{C} . On désignera par \mathcal{C} un cercle (de centre z_0 et de rayon R non nul) de \mathbb{C} :

$$\mathcal{C} = \{ z \in \mathbb{C}, \ |z - z_0| = R \}.$$

On notera respectivement \mathcal{C}^- et \mathcal{C}^+ l'intérieur géométrique et l'extérieur géométrique de \mathcal{C} . Plus précisément :

$$C^- = \{ z \in \mathbb{C}, \ |z - z_0| < R \}, \ C^+ = \{ z \in \mathbb{C}, \ |z - z_0| > R \}.$$

6) Soit \mathcal{C} un cercle de centre z_0 et de rayon R > 0 tel que l'origine 0 appartient à \mathcal{C}^+ . On pose $z_0 = re^{i\alpha}$ où $r \in]R, +\infty[$ et $\alpha \in \mathbb{R}$. Prouver que $f(\mathcal{C})$ est un cercle dont on précisera le centre et le rayon en fonction de r, α, R . Vérifier en outre que l'origine 0 appartient à $f(\mathcal{C})^+$. (On pourra partir de

$$(z-z_0)(\overline{z}-\overline{z_0})=z\overline{z}-z_0\overline{z}-z\overline{z_0}+z_0\overline{z_0}=R^2.$$

7) On conserve les hypothèses et notations de la question précédente. Prouver que $f(\mathcal{C}^-) = f(\mathcal{C})^-$. C'est à dire que f transforme l'intérieur du cercle \mathcal{C} en la totalité de l'intérieur du cercle $f(\mathcal{C})$ (on pourra utiliser le fait admis suivant. Un point u de $\mathbb{C} \setminus \{0\}$ appartient à \mathcal{C}^- si et seulement si la demi-droite D_u issue de 0 et passant par u rencontre \mathcal{C} en deux points distincts A, B tels que u appartient au segment $ouvert \mid A, B \mid$. On pourra alors considérer $f(D_u)$.

Soient $z_1, \dots, z_n \in \mathbb{C}$, non nécessairement deux à deux distincts.

Soit $\xi \in \mathbb{C} \setminus \{z_i, i \in \{1, \dots, n\}\}$ tel que $\frac{1}{n} \sum_{i=1}^n \frac{1}{z_i - \xi}$ est non nul. On considère alors le nombre complexe δ_{ξ} défini par

$$\frac{1}{\delta_{\xi} - \xi} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{z_i - \xi} \ . \tag{1}$$

- 8) Soit \mathcal{C} un cercle tel que $\{z_i, i \in \{1, \dots, n\}\} \subset \mathcal{C}^-$. Montrer que si l'origine 0 appartient à \mathcal{C}^+ alors δ_0 est bien défini et appartient à \mathcal{C}^- (on pourra commencer par prouver que $\frac{1}{n} \sum_{i=0}^n f(z_i)$ appartient à $f(\mathcal{C})^-$).
- 9) Soit \mathcal{C} un cercle tel que $\{z_i, i \in \{1, \dots, n\}\} \subset \mathcal{C}^-$. Montrer que si $\xi \in \mathcal{C}^+$ alors δ_{ξ} est bien défini et appartient à \mathcal{C}^- .

C. Condition d'apolarité.

Dans cette partie, z_1, \dots, z_n désigneront n nombres complexes non nécessairement deux à deux distincts.

10) Soit
$$P(X) = \prod_{i=1}^{n} (X - z_i)$$
 un polynôme de $\mathbb{C}_n[X]$ et

$$\xi \in \mathbb{C} \setminus \{z_i, i \in \{1, \dots, n\}\}.$$

Exprimer $\frac{P'(\xi)}{P(\xi)}$ en fonction des $\frac{1}{\xi - z_i}$ $(1 \le i \le n)$. En déduire que si $P'(\xi)$ est non nul alors

$$\delta_{\xi} = \xi - n \frac{P(\xi)}{P'(\xi)}$$

où δ_{ξ} est défini par (1).

11) Soit $P(X) = \prod_{i=1}^{n} (X - z_i) \in \mathbb{C}[X]$ et $z \in \mathbb{C} \setminus \{z_i, i \in \{1, \dots, n\}\}.$

Montrer que l'ensemble des zéros $\xi \in \mathbb{C}$ de $A_z P(X)$ est la réunion des deux ensembles suivants:

- $\{z_i, 1 \le i \le n, P'(z_i) = 0\}$. $\{\xi \in \mathbb{C} \setminus \{z_i, i \in \{1, \dots, n\}\}, \delta_{\xi} = z\}$, où δ_{ξ} est défini par (1).
- 12) On conserve les notations de la question précédente. Montrer que

$$z = \frac{1}{n} \sum_{j=1}^{n} z_j$$

si et seulement si le degré de $A_z P(X)$ est strictement inférieur à n-1.

13) On considère le polynôme $P(X) = \prod_{i=1}^{n} (X - z_i)$ et $z \in \mathbb{C}$. On suppose qu'il existe un cercle C_1 tel que $\{z_i, i \in \{1, \dots, n\}\} \subset C_1^-$ et $z \in \mathcal{C}_1 \cup \mathcal{C}_1^+$. Prouver alors que $A_z P(X)$ est exactement de degré n-1. Puis prouver que les n-1 zéros de $A_zP(X)$ (en comptant les multiplicités) appartiennent tous à \mathcal{C}_1^- (on pourra utiliser les questions 9 et 11).

On considère deux polynômes de $\mathbb{C}[X]$ de degré n,

$$P(X) = u \prod_{i=1}^{n} (X - z_i), \text{ et } Q(X) = v \prod_{i=1}^{n} (X - z_i'),$$

où $u,v\in\mathbb{C}^*$ et z_i,z_i' désignent respectivement les zéros de P(X) et Q(X).

On dira que P est apolaire par rapport à Q si $A_{z'_1}A_{z'_2}\cdots A_{z'_n}P(X)=0$. Quand on écrit $A_{z'_1}A_{z'_2}\cdots A_{z'_n}$ dans cet ordre on utilise la convention décrite dans la question 2. Plus précisément, $A_{z_n'}$ est vu comme application de $\mathbb{C}_n[X]$ vers $\mathbb{C}_{n-1}[X],\ A_{z'_{n-1}}$ est vu comme application de $\mathbb{C}_{n-1}[X]$ vers $\mathbb{C}_{n-2}[X], \ldots, A_{z_1'}$ est vu comme application de $\mathbb{C}_1[X]$ vers \mathbb{C} . Ainsi $A_{z'_1}A_{z'_2}\cdots A_{z'_n}P(X)$ est une constante.

14) On suppose que P est apolaire par rapport à Q. Montrer que si \mathcal{C} est un cercle tel que $\{z_i, i \in \{1, \dots, n\}\} \subset \mathcal{C}^-$ alors il existe $i \in \{1, \dots, n\}$ tel que $z_i' \in \mathcal{C}^-$ (on utilisera la question précédente).

Dans la suite, on fixe a, b deux points distincts de \mathbb{C} .

15) Montrer qu'il existe $b_0, \dots, b_{n-1} \in \mathbb{C}$ que l'on calculera, tels que pour tout polynôme du type

$$T(X) = a_0 + \binom{n-1}{1} a_1 X + \dots + \binom{n-1}{n-2} a_{n-2} X^{n-2} + a_{n-1} X^{n-1},$$

on ait
$$\int_0^1 T(a+t(b-a))dt =$$

$$a_0b_{n-1} - \binom{n-1}{1}a_1b_{n-2} + \binom{n-1}{2}a_2b_{n-3} + \dots + (-1)^{n-1}a_{n-1}b_0.$$

Avec les notations de la question précédente, on fixe n un entier supérieur ou égal à deux et on pose

$$\Delta(X) = b_0 + \binom{n-1}{1}b_1X + \dots + \binom{n-1}{n-2}b_{n-2}X^{n-2} + b_{n-1}X^{n-1}.$$

16) Montrer que $\Delta(X) = C_n((X-a)^n - (X-b)^n)$ où C_n est une constante non nulle que l'on calculera.

Soit $P(X) \in \mathbb{C}_n[X]$ de degré $n \ge 2$ tel que P(a) = P(b). On écrit

$$P'(X) = a_0 + \binom{n-1}{1} a_1 X + \dots + \binom{n-1}{n-2} a_{n-2} X^{n-2} + a_{n-1} X^{n-1}.$$

On désigne par $t_1, t_2, \ldots, t_{n-1}$ les zéros (comptés avec multiplicité) de P'(X). On admet que la constante $(-1)^{n-1} \frac{a_{n-1}}{(n-1)!} A_{t_1} A_{t_2} \ldots A_{t_{n-1}} \Delta(X)$ est égale à :

$$a_0b_{n-1} - \binom{n-1}{1}a_1b_{n-2} + \binom{n-1}{2}a_2b_{n-3} + \dots + (-1)^{n-1}a_{n-1}b_0.$$

17) Montrer que $\Delta(X)$ est apolaire par rapport à P'(X) (on pourra utiliser la question 15). En déduire alors le **Théorème 1** (on pourra appliquer la question 14).

FIN DU PROBLÈME