00 MATH. I - PC

ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE, ÉCOLE POLYTECHNIQUE (FILIÈRE TSI).

CONCOURDS D'ADMISSION 2000

MATHÉMATIQUES

PREMIÈRE ÉPREUVE FILIÈRE PC

(Durée de l'épreuve : 3 heures)

Sujet mis à la disposition des concours : ENSTIM, INT, TPE-EIVP.

L'emploi de la calculette est interdit.

Les candidats sont priés de mentionner de façon très apparente sur la première page de la copie : MATHÉMATIQUES I - PC.

L'énoncé de cette épreuve, particulière aux candidats de la filière PC, comporte 5 pages.

Si un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Dans tout le problème n est un entier naturel supérieur ou égal à 2 ($n \ge 2$). Soit $B = (e_1, e_2, ..., e_n)$ la base canonique de l'espace vectoriel complexe \mathbb{C}^n . A un vecteur X de l'espace vectoriel \mathbb{C}^n , de coordonnées $x_1, x_2, ..., x_n$, est associée la matrice V(X) dont les éléments $V(X)_{p,q}$, $1 \le p \le n$, $1 \le q \le n$, sont définis par la relation :

$$V(X)_{p,q} = (x_p)^{q-1}.$$

Le déterminant v(X) de la matrice V(X) est un déterminant de Van der Monde ; il est admis que sa valeur est donnée par la relation suivante :

$$v(X) = \det V(X) = \prod_{1 \le p < q \le n} (x_q - x_p).$$

Il est admis que l'application $\|.\|$ de l'espace vectoriel complexe \mathbb{C}^n dans \mathbb{R}^+ :

$$X \mapsto \|X\| = \sup_{1 \le p \le n} |x_p|,$$

est une norme. Soit E_n l'espace vectoriel normé (\mathbb{C}^n , $\|.\|$).

Le but du problème est de montrer qu'à cette application v de E_n dans \mathbb{C} peut être associé un réel ρ tel que, pour tout vecteur X de E_n la relation suivante a lieu :

$$|v(X)| \leq \rho ||X||^{n(n-1)/2}$$

où le réel ρ est une valeur prise pour un vecteur unitaire particulier W:

$$\rho = |v(W)|$$
, avec : $||W|| = 1$.

1. Définition du réel ρ :

L'entier n est fixé $(n \ge 2)$.

a. Comparer pour tout vecteur X de l'espace vectoriel normé E_n et tout nombre complexe λ les deux expressions $v(\lambda X)$ et v(X).

En particulier, étant donné un vecteur X de E_n , soit Y un vecteur de E_n de norme unité vérifiant la relation : $X = ||X|| \cdot Y$; exprimer le nombre complexe v(X) en fonction de v(Y) et de ||X||.

b. Démontrer que l'application v de l'espace vectoriel normé E_n dans \mathbb{C} est continue. En déduire que l'application continue $X \mapsto |v(X)|$ admet un maximum sur la sphère unité S,

$$S = \{X \in E_n \mid ||X|| = 1\},\$$

atteint pour au moins un vecteur W. Soit ρ le maximum de cette fonction sur la sphère unité :

$$\rho = \max_{\|X\|=1} |v(X)|.$$

c. Démontrer les deux relations :

i. pour tout vecteur X de E_n , $|v(X)| \le \rho ||X||^{n(n-1)/2}$;

ii. il existe au moins un vecteur unitaire W de E_n tel que

$$|v(W)| = \rho.$$

2. Cas n = 2:

Caractériser les vecteurs qui appartiennent à la sphère unité S :

$$S = \{X \in E_2 \mid ||X|| = 1\}.$$

Déterminer le maximum ρ de la fonction $X \mapsto |v(X)|$ sur la sphère unité. Démontrer que les vecteurs unitaires qui rendent maximum |v(X)| sont proportionnels à un même vecteur X_1 dont la première coordonnée est égale à 1. Les déterminer.

3. Cas n = 3:

a. Etant donnés trois réels positifs ou nuls t_1 , t_2 et t_3 , $(t_i \ge 0, 1 \le i \le 3)$ démontrer l'inégalité suivante

$$t_1.t_2.t_3 \leq \frac{1}{27}(t_1+t_2+t_3)^3.$$

Démontrer que l'égalité a lieu si et seulement si les trois réels t_1, t_2, t_3 sont égaux.

b. Etant donnés trois nombres complexes x_1 , x_2 et x_3 , soient A, B et C les trois fonctions des variables x_1 , x_2 et x_3 définies par les relations suivantes :

$$A = |x_1 - x_2|^2 + |x_2 - x_3|^2 + |x_3 - x_1|^2$$

$$B = \sum_{k=1}^{3} |x_k|^2$$
 ; $C = \left| \sum_{k=1}^{3} x_k \right|^2$.

Démontrer que A est une combinaison linéaire de B et de C.

c. Caractériser les vecteurs qui appartiennent à la sphère unité S :

$$S = \{X \in E_3 \mid ||X|| = 1\}.$$

d. Calculer, pour un vecteur X quelconque de l'espace E_3 , l'expression $|v(X)|^2$. En déduire une valeur possible pour le réel ρ . Déterminer les équations que vérifient les coordonnées x_1 , x_2 et x_3 d'un vecteur W unitaire rendant |v(W)| maximum. Exhiber une solution à l'aide des racines cubiques de l'unité. En déduire le réel ρ .

4. Une minoration du réel ρ :

Soit Ω le vecteur unitaire dont les coordonnées ω_p , $1 \le p \le n$, sont définies par la relation :

$$\omega_p = e^{2i(p-1)\pi/n} = \exp\left(\frac{2i(p-1)\pi}{n}\right).$$

- a. $V(\Omega)$ est la matrice définie à partir du vecteur Ω ; $\overline{V(\Omega)}$ est la matrice complexe conjuguée. Démontrer que la matrice produit $\overline{V(\Omega)}.V(\Omega)$ est une matrice proportionnelle à la matrice identité.
- b. En déduire la valeur du module $|v(\Omega)|$ du déterminant de la matrice $V(\Omega)$ et une minoration du réel ρ .

5. Une inégalité de Hadamard :

Dans cette question il est admis que l'application de $\mathbb{C}^n \times \mathbb{C}^n$ dans \mathbb{C} qui, à deux vecteurs $X = (x_i)_{1 \le i \le n}$ et $Y = (y_i)_{1 \le i \le n}$, fait correspondre le nombre complexe $(X \mid Y)$, défini par la relation suivante

$$(X \mid Y) = \sum_{i=1}^{n} \overline{x_i}.y_i,$$

est un produit scalaire hermitien. Soit F_n l'espace préhilbertien (\mathbb{C}^n , (. | .)).

La norme déduite de ce produit scalaire est notée $\|.\|_2$; elle est définie par la relation :

$$||X||_2 = \sqrt{(X | X)} = \sqrt{\sum_{i=1}^n |x_i|^2}.$$

Etant donnée une suite de n vecteurs indépendants $V_1, V_2, ..., V_n$ de l'espace préhilbertien F_n , soit $M(V_1, V_2, ..., V_n)$ la matrice carrée d'ordre n dont les vecteurs colonnes sont les vecteurs $V_1, V_2, ..., V_n$.

a. Déterminer, lorsque les vecteurs V_1 , V_2 ,..., V_n sont deux à deux orthogonaux, le produit B de la matrice transposée de la matrice complexe conjuguée de la matrice $M(V_1, V_2, ..., V_n)$ avec la matrice $M(V_1, V_2, ..., V_n)$:

$$B = {}^{t}\overline{M(V_{1}, V_{2}, ..., V_{n})}.M(V_{1}, V_{2}, ..., V_{n}).$$

Que vaut le module du déterminant de la matrice $M(V_1, V_2, ..., V_n)$?

- b. Soit $U_1, U_2, ..., U_n$ les vecteurs de l'espace F_n définis de la manière suivante :
- $U_1 = V_1$
- $U_2 = V_2 proj_1(V_2)$; $proj_1(V_2)$ est le vecteur projection du vecteur V_2 sur la droite

vectorielle engendrée par V_1 ,

• pour tout entier i compris entre 3 et n ($3 \le i \le n$) : $U_i = V_i - proj_{i-1}(V_i)$; $proj_{i-1}(V_i)$ est le vecteur projection du vecteur V_i sur l'espace vectoriel engendré par les vecteurs $V_1, V_2, ..., V_{i-1}$.

Démontrer l'égalité entre les déterminants des deux matrices $M(V_1, V_2, ..., V_n)$ et $M(U_1, U_2, ..., U_n)$:

$$\det M(U_1, U_2, ..., U_n) = \det M(V_1, V_2, ..., V_n).$$

c. Déduire des résultats précédents l'inégalité :

$$\left| \det M(V_1, V_2, ..., V_n) \right| \le \|V_1\|_2 .\|V_2\|_2 ... \|V_n\|_2.$$

Démontrer, lorsque les vecteurs V_1 , V_2 ,..., V_n sont tous différents de 0, qu'il y a égalité entre les deux membres de cette relation si et seulement si les vecteurs V_1 , V_2 ,..., V_n sont deux à deux orthogonaux.

6. Une majoration du réel ρ :

Démontrer pour tout vecteur X de l'espace vectoriel E_n , de coordonnées $x_1, x_2, ..., x_n$, l'inégalité suivante :

$$|v(X)|^2 \le \prod_{q=1}^n \sum_{p=1}^n |x_q|^{2(p-1)}.$$

Déterminer pour un vecteur X unitaire (||X|| = 1) de l'espace vectoriel E_n une majoration du module |v(X)|. En déduire la valeur du réel ρ .

7. Recherche des vecteurs W:

Soit W un vecteur unitaire de l'espace E_n , de coordonnées x_p , $1 \le p \le n$, pour lequel le déterminant v(W) de la matrice V(W) a un module égal au réel $\rho = n^{n/2}$:

$$|v(W)|=n^{n/2}.$$

a. Démontrer que les coordonnées $x_p, 1 \le p \le n$ de ce vecteur W sont deux à deux différentes l'une de l'autre :

pour tout couple d'entiers p et q, $p \neq q$, $x_p \neq x_q$.

b. Démontrer, en utilisant par exemple l'inégalité de Hadamard, que les coordonnées $x_1, x_2, ..., x_n$, de ce vecteur ont toutes un module égal à 1 et vérifient les n-1 relations suivantes .

$$\sum_{p=1}^{n} x_p = 0, \ \sum_{p=1}^{n} (x_p)^2 = 0, ..., \sum_{p=1}^{n} (x_p)^{n-1} = 0.$$

A ce vecteur W est associé le polynôme P_W défini par la relation suivante : pour tout réel t,

$$P_W(t) = \prod_{p=1}^n (t - x_p).$$

Ce polynôme P_W peut aussi être écrit sous la forme :

$$P_W(t) = \sum_{k=1}^n \alpha_k t^k.$$

c. Que vaut le coefficient α_n ? Démontrer qu'il est possible de poser $\alpha_0 = -e^{i\theta_0}$ où θ_0 est un réel.

Soit F_W la fraction rationnelle définie par la relation :

$$F_W(t) = \frac{P_W(t)}{P_W(t)}.$$

 $P_W(t)$ est le polynôme dérivée du polynôme P_W .

d. Démontrer que, sur l'ensemble de définition de la fraction rationnelle F_W , la relation ci-dessous a lieu. :

$$F_W(t) = \sum_{p=1}^n \frac{1}{t - x_p}.$$

En déduire qu'il existe un réel R (R > 0) tel que sur l'intervalle ouvert]-R,R[la fonction F_W est développable en série entière. Déterminer un minorant du réel R.

La fonction F_W est donc dans l'intervalle]-R,R[la somme d'une série entière qui s'écrit :

$$F_W(t) = \sum_{k=0}^{\infty} f_k t^k.$$

- e. Déterminer les coefficients f_k , k = 0, 1, ..., à l'aide des coordonnées du vecteur W. Quelle conclusion en tirer sur les n 1 premiers coefficients f_0 , f_1 , ..., f_{n-2} ?
- f. Déduire des résultats précédents l'expression du polynôme P_W , polynôme dérivée du polynôme P_W . Déterminer le polynôme P_W , puis les coordonnées x_p , $1 \le p \le n$ du vecteur W. Calculer, à titre de vérification, les normes de ce vecteur dans E_n et dans F_n c'est-à-dire $\|W\|$ et $\|W\|_2$.
 - g. Combien y-a-t-il de vecteurs W dont une au moins des coordonnées est égale à 1 ?

FIN DU PROBLÈME