CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES

ITS Voie A

CORRIGE DE LA PREMIERE EPREUVE DE MATHEMATIQUES

Exercice n° 1

- 1. La dérivée est égale à $f'(x) = 2xe^{x^2} Ln(1+x) + \frac{e^{x^2}}{1+x}$ et f'(0) = 1.
- 2. Il faut que la dérivée seconde soit nulle pour obtenir un point d'inflexion et qu'elle change de signe :

$$f''(x) = 6x - 6 = 0$$
, d'où $x = 1$.

- 3. $x^3 + x 2 = (x 1)(x^2 + x + 2) = 0$, d'où x = 1 car $(x^2 + x + 2) \neq 0$.
- 4. $x^4 4x^3 + 6x^2 4x + 1 = (x 1)^4 = 0$, d'où x = 1 avec une multiplicité d'ordre 4.
- 5. $I = Ln4 \int_{0}^{1} Ln(1+x) dx = Ln4 \left[xLn(1+x)\right]_{0}^{1} + \int_{0}^{1} \frac{x}{1+x} dx = Ln2 + \left[x-Ln(1+x)\right]_{0}^{1} = 1$.
- 6. $\lim_{n \to \infty} S_n = -1 + \lim_{n \to \infty} \sum_{k=1}^n \left(\frac{1}{2}\right)^k = -1 + 2 = 1$.
- 7. La valeur moyenne d'une fonction f sur un intervalle $\left[a,b\right]$ est définie par :

$$\frac{1}{b-a}\int_{a}^{b}f(t)dt$$
, soit ici 7/3.

8. Si *i* désigne le taux d'inflation de février, on doit avoir :

$$(1+0.008)(1+i) = 1.01808$$
, soit $i = 1\%$.

9. Par combinaison des deux lignes, on obtient :

$$2x^3 + 3x^2 - 5 = (x - 1)(2x^2 + 5x + 5) = 0$$
, d'où $x = y = 1$, car $(2x^2 + 5x + 5) \neq 0$.

10. La moyenne nationale est égale à : $\frac{(8,2\times120)+(13,1\times80)+(9,68\times100)}{(120+80+100)}=10.$

Exercice n° 2

- 1. La dérivée de f est égale à $f'(x) = \frac{1 Ln x}{x^2}$, cette fonction est croissante sur l'intervalle [0,e], décroissante sur l'intervalle $[e,+\infty[$ et nulle pour x=e.
- 2. La dérivée seconde de f est égale à : $f''(x) = \frac{(-3 + 2Ln \, x)}{x^3}$ et cette dérivée seconde s'annule pour $x = e\sqrt{e}$ et change de signe au voisinage. Le point de coordonnées $(e\sqrt{e}, 3/2e\sqrt{e})$ est donc un point d'inflexion pour cette fonction.
- 3. On obtient directement $I = \int_{1}^{e} f(x) dx = \left[\frac{(Ln x)^2}{2} \right]_{1}^{e} = 1/2$.

Exercice n° 3

Résoudre dans l'ensemble des nombres réels, le système suivant :

$$\begin{cases} x+y+z=3\\ xy+z=2\\ x+2y+3z=\frac{13}{2} \end{cases}$$

En combinant la première et la troisième ligne, on obtient : $z = x + \frac{1}{2}$, puis en remplaçant dans les deux premières équations; $xy + x = \frac{3}{2}$ et $2x + y = \frac{5}{2}$, d'où $-4x^2 + 7x - 3 = 0$. On obtient alors les solutions suivantes :

$$(x, y, z) = (1, 1/2, 3/2)$$
 ou $(3/4, 1, 5/4)$.

Exercice n° 4

1. Cette fonction f est strictement convexe (dérivée seconde strictement positive), elle admet un minimum unique en la valeur qui annule la dérivée première.

$$f'(x) = 2ax - 2(1-x)$$
 $b = 0$ pour $x = \frac{b}{a+b}$ et le minimum est égal à $f(\frac{b}{a+b}) = \frac{ab}{a+b}$

- 2. On a $\frac{ab}{a+b} = 2/3$ et a+b=3. Il s'agit donc de trouver deux nombres connaissant leur produit et leur somme. On trouve b=1 et a=2(b < a).
- 3. Les points d'intersection sont déterminés par l'équation : f(x) = g(x) ou encore $ax^2 + (1-x)^2b = \alpha x$, ce qui revient à résoudre l'équation : $(a+b)x^2 (\alpha + 2b)x + b = 0$. Le discriminant de cette équation vaut : $\Delta = (\alpha + 2b)^2 4b(a+b) = \alpha^2 + 4\alpha b 4ab$.

Si $0 < \alpha < -2b + 2\sqrt{b(a+b)}$, on a deux points d'intersection,

Si $\alpha = -2b + 2\sqrt{b(a+b)}$, on a un seul point d'intersection (la droite est tangente à la parabole),

Si $\alpha > -2b + 2\sqrt{b(a+b)}$, pas d'intersection entre les deux graphes.

4. Montrons que l'axe vertical qui passe par le minimum de la fonction est un axe de symétrie.

Soit $X = x - \frac{b}{a+b}$, la fonction devient $f(x) = f(X + \frac{b}{a+b}) = (a+b)X^2 + \frac{ab}{a+b}$ et cette fonction est paire en X.

Exercice n° 5

On considère la fonction f définie sur R^* par : $f(x) = \frac{Ln(1+x^2)}{x}$

1. On peut remarquer que cette fonction est impaire (graphe symétrique par rapport à l'origine) et faire l'étude que pour les valeurs positives. De plus $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{x^2}{x} = 0$, on peut donc prolonger f par continuité à l'origine en posant f(0) = 0.

La dérivée de f est égale à $f'(x) = \frac{2x^2 - (1+x^2)Ln(1+x^2)}{x^2(1+x^2)}$.

ou encore 2(t-1)-tLnt=0 en posant $t=1+x^2$, $t \ge 1$.

Soit z(t) = 2(t-1) - tLnt = 0, z'(t) = 1 - Lnt qui est nulle pour t = e.

On trouve z(e)=e-2>0 et par exemple $z(e^2)=-2<0$. D'après le théorème des valeurs intermédiaires, il existe une unique valeur t_0 dans l'intervalle e,e^2 qui annule z(t). Soit $x_0=\sqrt{t_0-1}$. La fonction f est croissante sur l'intervalle e,e^2 et décroissante sur e,e^2 .

La fonction est croissante sur l'intervalle $\left]0,\sqrt{e-1}\right]$ et décroissante sur l'intervalle $\left[\sqrt{e-1},+\infty\right[$.

2.
$$I = \int_{0}^{1} x f(x) dx = \int_{0}^{1} Ln(1+x^{2}) dx = \left[x Ln(1+x^{2})\right]_{0}^{1} - \int_{0}^{1} \frac{2x^{2}}{1+x^{2}} dx = Ln2 - 2 + 2\int_{0}^{1} \frac{1}{1+x^{2}} dx$$
.

On obtient:

$$I = Ln2 - 2 + 2[Arctgx]_0^1 = Ln2 - 2 + \frac{\pi}{2}$$

3. Soit la suite (u_n) définie par : $u_0 = 1$ et $u_{n+1} = f(u_n)$ pour tout entier naturel n strictement positif.

On vérifie facilement par récurrence que $u_n > 0$ pour tout n.

De plus,
$$u_{n+1} - u_n = \frac{Ln(1 + u_n^2) - u_n^2}{u_n} < 0$$
,

La suite (u_n) étant minorée et décroissante, elle converge vers une limite unique l solution de l'équation l=f(l), car f est continue, avec son prolongement par continuité en 0, d'où l=0

Exercice n° 6

On note E(x) la partie entière d'un nombre réel x, à savoir le plus grand entier inférieur ou égal à x. On définit alors la fonction numérique f par : f(x) = x E(x).

1. E(x) étant constante sur tout intervalle [n, n+1[, où n est un entier. Elle est continue et dérivable sur R-Z. Donc f est également continue et dérivable sur R-Z. Les questions ne se posent qu'aux valeurs entières.

Pour
$$x = n$$
, $f(x) = n^2$ et $\lim_{x \to n^-} f(x) = \lim_{x \to n^-} x(n-1) = n(n-1) \neq f(n)$ si $n \neq 0$.

En conclusion f est continue seulement en x = 0 parmi les valeurs entières.

2. D'après la question précédente, la dérivabilité ne se pose qu'en zéro. $\lim_{x\to 0^-} \frac{(f(x)-f(0))}{x} = -1 \neq f(0) = 0$, donc f n'est pas dérivable à l'origine.

3.
$$\int_{-1}^{2} f(x) dx = -\int_{-1}^{0} x dx + 0 + \int_{1}^{2} x dx = 1/2 + 3/2 = 2$$

Exercice n° 7

On considère la fonction f définie sur $R^{+^*} \times R^{+^*}$ par $f(x,y) = x^{\alpha}y^{\beta}$, où R^{+^*} désigne l'ensemble des nombres réels strictement positifs, α et β étant des paramètres réels strictement positifs.

- 1. On obtient : $(g_y)'(x) = \alpha x^{\alpha-1} y^{\beta}$. La dérivée étant strictement positive, la fonction est strictement croissante. Elle est convexe si $\alpha > 1$, concave pour $0 < \alpha < 1$ et constante si $\alpha = 1$.
- 2. Comme la fonction f est croissante, son maximum est atteint pour la plus grande valeur possible de x qui vérifie la contrainte $ax + by \le r$, donc pour $x = \frac{r by}{a}$ Ce maximum est égal à $(\frac{r - by}{a})^{\alpha}y^{\beta}$
- 3. On peut considérer que x et y correspondent à deux produits. L'individu cherche à maximiser sa consommation en x (quitte à diminuer sa consommation en y, sans être nulle) sans dépasser son revenu (r) disponible. La fonction correspond à une fonction de Cobb-Douglas.

AVRIL 2009

CONCOURS INGÉNIEURS DES TRAVAUX STATISTIQUES

ITS Voie A

Correction de la Deuxième Composition de Mathématiques

Exercice 1

1. Le graphique de la fonction f admet la droite y = x - 3 comme asymptote si

$$\lim_{x \to +\infty} f(x) - (x - 3) = 0 \text{ et } \lim_{x \to -\infty} f(x) - (x - 3) = 0.$$

À partir de la première limite nous obtenons

$$1 = \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{ax^3}{(b+cx)^3} = \frac{a}{c^3}$$

et

$$-3 = \lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \left(\frac{c^3 x^4}{(b + cx)^3} - x \right) = -3\frac{b}{c}.$$

La seconde limite fournit les mêmes relations. En conclusion, les constantes a,b et c doivent satisfaire les relations

$$a = c^3$$
 et $b = c$.

2. On en déduit que l'expression de la fonction est

$$f(x) = \frac{x^4}{(1+x)^3}$$
, pour tout $x \in E = \mathbb{R} - \{-1\}$.

3. Comme

$$\lim_{\substack{x \to -1 \\ x < -1}} f(x) = -\infty \text{ et } \lim_{\substack{x \to -1 \\ x > -1}} f(x) = +\infty,$$

le graphique de f admet la droite x=1 comme asymptote verticale. La dérivée de la fonction f est

$$f'(x) = \frac{x^3(x+4)}{(1+x)^4}$$

et nous avons le tableau de variation suivant :

x	-∞		-4			-1			0		$+\infty$
f'(x)		+	0	-				-	0	+	
f(x)	-∞	\uparrow	-256/27	\downarrow	-∞		$+\infty$	\downarrow	0	↑	$+\infty$

Exercice 2

- A. Si $x_0 \geq a$.
 - 1. Nous démontrons par récurrence que $x_n \ge a$ pour tout entier $n \ge 1$. D'abord, $x_1 a = \frac{a(x_0 a)}{x_0 + a} \ge 0$, donc $x_1 \ge a$. Ensuite, en supposant que $x_{n-1} \ge a$, nous avons

$$x_n = \frac{2ax_{n-1}}{x_{n-1} + a} \ge \frac{2ax_{n-1}}{x_{n-1} + x_{n-1}} = a.$$

- 2. $x_{n+1} x_n = \frac{x_n(a x_n)}{x_n + a} \le 0$, car $(a x_n) \le 0$ et $x_n > 0$.
- 3. La suite étant décroissante et minorée, elle est par conséquent convergente. Notons par l_1 sa limite, $l_1 = \lim_{n \to +\infty} x_n$. À partir de la relation de récurrence nous avons :

$$l_1 = \frac{2al_1}{l_1 + a},$$

d'où on obtient $l_1=0$ ou $l_1=a$. D'autre part, nous savons que $x_n\geq a>0$, ce qui implique que $l_1\geq a>0$. Par conséquent, la limite recherchée est $l_1=a$.

- **B.** Si $x_0 < a$.
 - 1. D'abord, $x_1 a = \frac{a(x_0 a)}{x_0 + a} < 0$, donc $x_1 < a$. En plus, nous avons $x_1 = \frac{2ax_0}{x_0 + a} > 0$, donc $0 < x_1 < a$. Par récurrence on démontre que $0 < x_n < a$ pour tout entier $n \ge 1$.
 - 2. $x_{n+1} x_n = \frac{x_n(a x_n)}{x_n + a} > 0$, car $(a x_n) > 0$ et $x_n > 0$.
 - 3. La suite étant croissante et bornée, elle est par conséquent convergente. Soit $l_2 = \lim_{n \to +\infty} x_n$. À partir de la relation de récurrence nous obtenons $l_2 = 0$ ou $l_2 = a$. D'autre part, comme $0 < x_n < a$ et la suite est strictement croissante, nous en déduisons $l_2 = a$.

Exercice 3

- 1. Les fonctions sin et cos étant périodiques de période 2π , la fonction f est périodique de période 2π . Par conséquent, on peut d'abord considérer la restriction de f sur l'intervalle $[0, 2\pi]$.
- 2. En résolvant l'équation g'(x)=0, nous obtenons $-\sin(x)-\cos(x)=0$, qui a les solutions $x_1=3\pi/4$ et $x_2=7\pi/4$ sur $[0,2\pi]$. En tenant compte du fait que $g(0)=g(2\pi)=\lambda+1$ et de la variation de g, nous obtenons que la fonction g a un minimum global $g(3\pi/4)=\lambda-\sqrt{2}$ et un maximum global $g(7\pi/4)=\lambda+\sqrt{2}$. Par conséquent, $\lambda-\sqrt{2}\leq g(x)\leq \lambda+\sqrt{2}$ pour tout $x\in[0,2\pi]$.
- 3. Si $\lambda \leq -\sqrt{2}$, on a $g(x) \leq 0$, donc $f(x) = \sin(x)$ pour tout $x \in [0, 2\pi]$. Cette fonction est évidement dérivable sur $[0, 2\pi]$. Si $\lambda \geq \sqrt{2}$, on a $g(x) \geq 0$, donc $f(x) = \lambda + \cos(x)$ pour tout $x \in [0, 2\pi]$, cette fonction étant dérivable sur $[0, 2\pi]$.
- 4. Pour $-\sqrt{2} < \lambda < \sqrt{2}$, comme la fonction g est continue, avec $\lambda \sqrt{2} \le g(x) \le \lambda + \sqrt{2}$, $g(3\pi/4) = \lambda \sqrt{2} < 0$ et $g(7\pi/4) = \lambda + \sqrt{2} > 0$, il en résulte par le théorème des valeurs intermédiaires qu'il existe x_0 , $3\pi/4 < x_0 < 7\pi/4$, tel que $g(x_0) = 0$. Par conséquent, sur l'intervalle $[3\pi/4, 7\pi/4]$ la fonction f a l'expression suivante :

$$f(x) = \begin{cases} \sin(x), & \text{si } 3\pi/4 < x < x_0, \\ \lambda + \cos(x), & \text{si } x_0 < x < 7\pi/4. \end{cases}$$

Prouvons que la fonction f n'est pas dérivable en x_0 . En effet, nous avons $f'_g(x_0) = \cos(x_0)$ et $f'_d(x_0) = -\sin(x_0)$, où f'_g et f'_d désignent les dérivées à gauche respectivement à droite de f. L'égalité $f'_g(x_0) = f'_d(x_0)$ a lieu si et seulement si $\cos(x_0) = -\sin(x_0)$, c'est-à-dire si $x_0 = 3\pi/4$ ou $x_0 = 7\pi/4$, ce qui n'est pas possible car $3\pi/4 < x_0 < 7\pi/4$. Par conséquent, f n'est pas dérivable en x_0 .

5. On conclut que la fonction est dérivable sur \mathbb{R} si et seulement si $\lambda \leq -\sqrt{2}$ ou $\lambda \geq \sqrt{2}$.

Exercice 4

• A.

1. Nous avons

$$z_2 = \frac{1 - \overline{z}_1}{1 + \overline{z}_1} = \frac{1 - a + bi}{1 + a - bi} = \frac{1 - a^2 - b^2 + 2bi}{(1 + a)^2 + b^2},$$

donc

$$m = \frac{1 - a^2 - b^2}{(1+a)^2 + b^2}$$
 et $n = \frac{2b}{(1+a)^2 + b^2}$.

2. Nous obtenons

$$z_1 - z_2 = \frac{a[(1+a)^2 + b^2] + a^2 + b^2 - 1 + (a^2 + b^2 - 1 + 2a)bi}{(1+a)^2 + b^2}$$

et

$$z_2^2 = \frac{(1 - a^2 - b^2)^2 - 4b^2 + 4(1 - a^2 - b^2)bi}{[(1 + a)^2 + b^2]^2},$$

qui fournissent les parties réelles et imaginaires demandées.

3. Le nombre complexe $z_1 - z_2$ est réel si et seulement si sa partie imaginaire est nulle, c'est-à-dire :

$$(a^2 + b^2 - 1 + 2a)b = 0. (0.1)$$

De même, pour que le nombre complexe z_2^2 soit un nombre réel il faut que sa partie imaginaire soit nulle, ce qui implique

$$(a^2 + b^2 - 1)b = 0. (0.2)$$

Nous devons résoudre le système formé par les équations (0.1) et (0.2). Si b=0, les deux équations sont satisfaites et nous obtenons $z_1=a$, avec a un réel quelconque. Si $b\neq 0$, alors de l'équation (0.2) on obtient $a^2+b^2=1$, ce qui implique, en utilisant l'équation (0.1), que a=0. À partir de l'équation (0.2) on en déduit que b=1 ou b=-1, donc les valeurs possibles de z_1 dans ce cas sont $z_1=i$ ou $z_1=-i$.

• B.

1. Pour tout réel x nous avons $g(x) = x^2 - 4x + 4 = (x-2)^2 \ge 0$, avec égalité seulement pour x = 2. Par conséquent, nous obtenons

$$f \circ g(x) = f(g(x)) = \begin{cases} 1, & \text{si } x \neq 2, \\ 0, & \text{si } x = 2. \end{cases}$$

D'autre part,

$$g \circ f(x) = g(f(x)) = (f(x) - 2)^2 = \begin{cases} 9, & \text{si } x < 0, \\ 4, & \text{si } x = 0, \\ 1, & \text{si } x > 0. \end{cases}$$

2. La fonction $f\circ g$ est constante sur $]-\infty,2[\cup]2,\infty[$, donc elle est continue sur $]-\infty,2[\cup]2,\infty[$. Comme

$$\lim_{x \to 2} f \circ g(x) = 1 \neq f \circ g(2) = 0,$$

on obtient que $f \circ g$ n'est pas continue en x = 2.

La fonction $g \circ f$ est constante sur $]-\infty,0[$ et sur $]0,\infty[$, donc elle est continue sur ces deux intervalles. On a

$$\lim_{\substack{x \to 0 \\ x < 0}} g \circ f(x) = 9 \neq 1 = \lim_{\substack{x \to 0 \\ x > 0}} g \circ f(x),$$

donc la fonction $g \circ f$ n'a même pas limite en x = 0 et, donc, elle n'est pas continue en x = 0.

Exercice 5

1. Soit A l'événement $A = \{$ trouver plus de 2 sujets ayant la maladie M dans le groupe de 100 sujets $\}$ et X la variable aléatoire qui donne le nombre de sujets ayant la maladie M dans ce groupe de 100 personnes. Nous pouvons alors écrire

$$\mathbb{P}(A) = \mathbb{P}(X > 2).$$

2. La variable aléatoire X suit une loi binomiale B(100; 0, 03), avec

$$\mathbb{P}(X=k) = C_{100}^k 0,03^k (1-0,03)^{100-k}, \quad k=0,1,\dots,100.$$

3.

$$F(2) = \mathbb{P}(X \le 2) = \mathbb{P}(X = 0) + \mathbb{P}(X = 1) + \mathbb{P}(X = 2)$$

$$= 0.97^{100} + 100 * 0.03 * 0.97^{99} + \frac{100 * 99}{2} * 0.03^{2} * 0.97^{98}$$

$$= 0.4199.$$

4. Nous calculons la probabilité demandée :

$$\mathbb{P}(A) = \mathbb{P}(X > 2) = 1 - \mathbb{P}(X \le 2) = 1 - F(2) = 0,5801.$$

5. Le nombre moyen des malades dans le groupe de 100 sujets est donné par

$$\mathbb{E}(X) = 100 * 0,03 = 3.$$