ECOLE NATIONALE SUPERIEURE DE STATISTIQUE

ET D'ECONOMIE APPLIQUEE

ABIDJAN

AVRIL 2003

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTION ECONOMIE

CORRIGE DE LA PREMIERE EPREUVE DE MATHEMATIQUES

PROBLEME n° 1

1) La fonction f(t)cost (resp. f(t)sint) est continue sur R comme produit de deux fonctions continues.

La fonction u est la primitive de cette fonction s'annulant en 0. u est donc dérivable sur R et pour tout x réel, $u'(x) = f(x)\cos x$. De même $v'(x) = f(x)\sin x$.

2) En développant sin(x - t) = sinx.cost - cosx.sint, et en utilisant la linéarité de l'intégrale, on a :

$$T_f(x) = u(x)\sin x - v(x)\cos x$$

T_f est donc dérivable (différence de produits de fonctions dérivables sur R).

Et on a, pour tout x réel :

 $T_f'(x) = u(x)\cos x + u'(x)\sin x - v'(x)\cos x + v(x)\sin x$

En remplaçant u' et v' par leurs expressions (question 1), on obtient :

$$T_f'(x) = u(x)\cos x + v(x)\sin x$$

On montre aisément que T_f ' est dérivable également, et que T_f '' est continue : T_f ''(x) = v(x)cosx - u(x)sinx + f(x)

 T_f appartient donc à F.

T est une application de E dans F.

La linéarité $T_{f+g} = T_f + T_g$ résulte de la linéarité de l'intégrale.

3) Puisque, d'après les questions 1 et 2, $T_f(x) = u(x)\sin x - v(x)\cos x$ et $T_f''(x) = v(x)\cos x - u(x)\sin x + f(x)$, on a bien $T_f + T_f'' = f$

Soit $f \in N(T)$: $T_f = 0$ et donc T_f " = 0 d'où $f = T_f + T_f$ " = 0 Donc le noyau de T se réduit à l'application nulle de R dans R.

4) Soit $g \in Im(T)$: cela signifie qu'il existe (au moins) une fonction f de E telle que $g = T_f$. Donc $g \in F$ et comme $g(x) = \int_{[0,x]} f(t) \sin(x-t) dt$, on a de façon évidente g(0) = 0 et g'(0) = 0 $\Rightarrow g \in G$

 $D'o\grave{u}: Im(T) \subset G$

Calcul de T_{q+q"}.

$$T_{g+g''}(x) = \int_{[0,x]} g(t)\sin(x-t) dt + \int_{[0,x]} g''(t)\sin(x-t) dt$$

Intégrons par parties :

Posons, dans la première intégrale, $u'(t) = \sin(x - t)$ et $v(t) = g(t) \Rightarrow u(t) = \cos(x - t)$ et v'(t) = g'(t).

Dans la deuxième intégrale, on pose u'(t) = g''(t) et $v(t) = \sin(x - t) \Rightarrow u(t) = g'(t)$ et $v'(t) = -\cos(x - t)$.

Remarque : aucune confusion entre ces notations u et v classiques en intégration par parties et les fonctions u et v de la question 1.

On obtient:

$$\begin{split} T_{g+g''}(x) &= [g(t)\cos(x-t)]_{[0,x]} - \int_{[0,x]} g'(t)\cos(x-t) \ dt + [g'(t)\sin(x-t)]_{[0,x]} \\ &+ \int_{[0,x]} g'(t)\cos(x-t) \ dt \\ &= g(x) - g(0)\cos x - g'(0)\sin x = g(x) \ car \ g(0) = g'(0) = 0. \end{split}$$

On déduit que si g appartient à G, alors $T_{g+g''} = g$, donc $g \in Im(T)$: $G \subset Im(T)$.

On en conclut Im(T) = G.

5) D'après les résultats précédents, T est une application linéaire de E dans G, injective (N(T) = 0) et telle que Im(T) = G (surjective). T est donc une bijection, c'est-à-dire un isomorphisme de E dans G, elle admet donc une application réciproque ,notée T^{-1} .

On a, pour tout g de G, $T_{g+g''}=g$; en composant par l'inverse, on a $T_g^{-1}=g+g''$.

6) Effectuons le calcul intégral:

$$T_f(x) = \int_0^x \sin t \sin(x - t) dt = \int_0^x [\cos(2t - x) - \cos x]/2 dt = (\sin x - x \cos x)/2$$

Posons
$$h(x) = (\sin x - x \cos x)/2$$
, $h \in F$, et donc $s = T_h^{-1}$ et $h + h'' = s$

PROBLEME n° 2

1) f est continue sur l'intervalle $U = [0, +\infty[$; elle admet donc une primitive F sur U, et on peut ainsi écrire h(x) = [F(x) - F(0)]/x.

F est dérivable et donc continue sur $]0, + \infty$ [; comme rapport de deux fonctions continues sur $]0, + \infty$ [, h est donc continue sur $]0, + \infty$ [.

Quand $x \to 0$, puisque F est dérivable en 0, [F(x) - F(0)]/x tend vers F'(0) = f(0) = h(0); d'où $\lim_{x \to 0} h(x) = h(0)$.

2) On a établi dans la question 1 que h était continue sur $U = [0, + \infty]$, c'est-à-dire que $h \in E$. H est donc une application de E dans E.

La linéarité de H est évidente : a et b étant deux réels, f et u deux fonctions de E :

- Pour x > 0, H(af + bu) = aH(f) + bH(u), d'après la linéarité de l'intégrale
- Ne pas oublier le cas x = 0: H(af + bu)(0) = (af + bu)(0) = af(0) + bu(0) = aH(f)(0) + bH(u)(0)
- 3) F est dérivable sur $]0, + \infty$ [donc h est dérivable sur $]0, + \infty$ [comme rapport de deux fonctions dérivables.
- 4) Supposons que 0 soit valeur propre de H: il existe donc une fonction f non nulle de E telle que H(f) = 0.

On a donc f(0) = 0 et, pour tout x > 0, F(x) - F(0) = 0, c'est-à-dire F(x) = F(0) = constante.

F étant constante, $F'(x) = f(x) = 0 \forall x \in]0, +\infty[$.

Or f est non nulle et donc 0 ne peut être valeur propre de H.

5) $H(f) = \alpha f = h \implies f = h / \alpha$

D'après la question 3, h est dérivable sur]0, + ∞[, donc f l'est aussi.

Plaçons-nous sur $]0, + \infty[$; pour tout x > 0, $\varphi(x) = f(x) = h(x)/\alpha = [F(x) - F(0)]/\alpha x$, ou encore :

$$\alpha x \varphi(x) = F(x) - F(0)$$

En dérivant :

$$\alpha[x\phi'(x) + \phi(x)] = f(x) = \phi(x)$$

D'où la relation demandée : $\forall x > 0$ $\alpha x \varphi'(x) = (1 - \alpha) \varphi(x)$

6) Soit x > 0.

On a:

$$g'(x) = (1 - 1/\alpha)x^{-1/\alpha}\phi(x) + x^{(\alpha - 1)/\alpha}\phi'(x).$$

 $g'(x) = x^{-1/\alpha} [\alpha x \phi'(x) + (\alpha - 1) \phi(x)]/\alpha = 0$ d'après la relation trouvée à la question 5.

La fonction g est donc constante sur $]0, +\infty[$.

7) On déduit de ce qui précède que si φ est la restriction à]0, + ∞ [d'une fonction f non nulle et continue telle que H(f) = α f, avec $\alpha \neq 0$, il existe une constante réelle k telle que g(x) = k, ou encore :

$$\varphi(x) = k x^{(1-\alpha)/\alpha}$$

Comme f est continue en 0, f admet une limite finie à droite en 0 égale à f(0) ; une condition nécessaire pour que ceci soit réalisé est que $(1-\alpha)/\alpha \ge 0$, c'est-à-dire :

$$0 < \alpha \le 1$$

Alors:
$$\lim_{x\to 0} f(x) = f(0) = 0 \text{ si } 0 < \alpha < 1 \text{ et } \lim_{x\to 0} f(x) = f(0) = k \text{ si } \alpha = 1.$$

8) Il résulte de tout ce qui précède que l'ensemble des valeurs propres α de H est l'intervalle]0, 1].

Si
$$\alpha \in (0, 1)$$
, $f(x) = k x^{(1-\alpha)/\alpha}$ pour $x > 0$ et $f(0) = 0$

Si
$$\alpha = 1$$
, $f(x) = k$

Remarque : en revenant à la définition initiale, on vérifie facilement par le calcul que les fonctions f précédentes sont bien les vecteurs propres associés aux valeurs propres $\alpha \in [0, 1]$ et $\alpha = 1$

ECOLE NATIONALE SUPERIEURE DE STATISTIQUE

ET D'ECONOMIE APPLIQUEE

ABIDJAN

AVRIL 2003

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTION ECONOMIE

CORRIGE DE LA DEUXIEME EPREUVE DE MATHEMATIQUES

Exercice n° 1

On définit la suite récurrente (u_h) , $n \ge 1$, par :

$$u_1 = 0$$

$$\forall n \ge 2 (n+1)^2 u_n = (n-1) u_{n-1} - n$$

1) Calculer u₂ et u₃.

Pour n = 2, 9
$$u_2 = u_1 - 2 \Rightarrow u_2 = -2/9$$

$$u_3 = -31/144$$

2) Montrer que, pour tout $n \ge 1$, $u_n \in [-1, 0]$.

Raisonnons par récurrence.

La propriété est vraie au rang 1. Supposons-la vraie au rang n.

•
$$u_{n+1} = [nu_n - (n+1)]/(n+2)^2$$

$$u_n \le 0 \Rightarrow nu_n - (n + 1) \le 0 \Rightarrow u_{n+1} \le 0$$

•
$$u_n - (-1) = [nu_n - (n+1) + (n+2)^2]/(n+2)^2$$

$$= [n^2 + n(u_n + 3) + 3]/(n + 2)^2$$

$$u_n \ge -1 \Rightarrow u_n + 3 \ge 2 \Rightarrow n^2 + n(u_n + 3) + 3 \ge 0 \Rightarrow u_{n+1} \ge -1$$

Donc la propriété est vraie au rang n+1.

3) Montrer que la suite (u_n) admet une limite que l'on déterminera.

$$u_n = [(n-1) u_{n-1} - n]/(n+1)^2 = A(n) u_{n-1} + B(n)$$

avec
$$A(n) = (n-1)/(n+1)^2$$
 et $B(n) = -n/(n+1)^2$

A(n) et B(n) tendent vers 0 quand n tend vers l'infini

Comme
$$u_{n-1} \in [-1, 0], -A(n) \le A(n)$$
 $u_{n-1} \le 0$, et donc $A(n)$ $u_{n-1} \to 0$ quand $n \to \infty$

Donc $u_n \to 0$ quand $n \to \infty$.

4) Montrer que, \forall $n \ge 2$, $u_n \le -n/(n+1)^2$; établir que la suite (u_n) est croissante à partir du rang n=2.

En reprenant l'expression $u_n = A(n) \ u_{n-1} + B(n)$, on a $A(n) \ u_{n-1} \le 0$ et donc :

$$u_n - B(n) = A(n) u_{n-1} \le 0 \implies u_n - B(n) \le 0$$

$$u_n \le - n/(n + 1)^2$$

•
$$\forall n \ge 2, u_{n+1} - u_n = [nu_n - (n+1)]/(n+2)^2 - u_n$$

$$= - [u_n(n^2 + 3n + 4) + (n + 1)]/(n + 2)^2$$

On a:

$$n^2 + 3n + 4 \ge 0$$

$$u_n \le - n/(n + 1)^2$$

$$\Rightarrow \ u_n(n^2+3n+4)+(n+1) \leq -\ n(n^2+3n+4)/(n+1)^2+(n+1)=(1-n)/(n+1)^2 < 0$$

Donc $u_{n+1} - u_n > 0$, c'est-à-dire que la suite est croissante à partir du rang 2.

Exercice n° 2

- 1) Démontrons le résultat par récurrence :
- La propriété est vraie pour n = 0 : P₀ = 1
- Supposons-la vraie au rang n

$$f^{(n+1)}(x) = [P_n'(x) (1 + x^2) - 2x(n+1)P_n(x)] (1 + x^2)^{-(n+2)}$$

Posons
$$P_{n+1}(x) = P_n'(x) (1 + x^2) - 2x(n + 1)P_n(x)$$

Soit P_n de degré n, de premier terme $a_n x^n$; le terme de plus haut degré de P_{n+1} est donc n $a_n x^{n+1} - 2(n+1)$ $a_n x^{n+1} = -(n+2)$ $a_n x^{n+1} \Rightarrow$ degré $P_{n+1} = n + 1$.

Tous les monômes de P_n ont la même parité que n: tous ceux de x $P_n(x)$ ont donc celle de n+1, ceux de $P_n'(x)$ ont celle de n-1, ceux de $P_n'(x)$ (1 + x^2) ont donc la parité de n+1.

La propriété générale est donc vraie au rang n + 1.

2) Calcul de f'(x):

$$f'(x) = -2x/(1 + x^2)^2$$

Donc:
$$(1 + x^2)f'(x) + 2xf(x) = 0 \quad \forall x \in \mathbb{R}$$

3) Partons de la relation établie à la question 2 : $(1 + x^2)f'(x) + 2xf(x) = 0$

Dérivons-la n fois :

$$\Sigma_{k=0\grave{a}n} \overset{k}{C_n} (1+x^2)^{(k)} (f'(x))^{(n-k)} + 2\Sigma_{k=0\grave{a}n} \overset{k}{C_n} x^{(k)} (f(x))^{(n-k)} = 0$$

Or on remarque que $(1 + x^2)^{(k)} = 0$ dès que k > 2 et $x^{(k)} = 0$ dès que k > 1.

L'équation générale se simplifie grandement et devient :

$$(1+x^2)(f'(x))^{(n)} + 2nx(f'(x))^{(n-1)} + n(n-1)(f'(x))^{(n-2)} + 2x(f(x))^{(n)} + 2n(f(x))^{(n-1)} = 0$$

d'où:

$$(1 + x^2)f^{(n+1)}(x) + 2nxf^{(n)}(x) + n(n-1)f^{(n-1)}(x) + 2xf^{(n)}(x) + 2nf^{(n-1)}(x) = 0$$

et:
$$(1 + x^2)f^{(n+1)}(x) + 2(n+1)xf^{(n)}(x) + n(n+1)f^{(n-1)}(x) = 0$$

En multipliant le tout par $(1 + x^2)^{n+1}$, on a :

$$P_{n+1}(x) + 2(n+1)xP_n(x) + n(n+1)(1 + x^2)P_{n-1}(x) = 0$$

4) D'après la relation définissant P_{n+1} , $P_{n+1}(x) = P_n'(x)$ (1 + x^2) – $2x(n + 1)P_n(x)$, vue à la question 1, en remplaçant $P_{n+1}(x)$ par cette expression dans la relation de la question 3, on obtient :

$$P_{n}'(x) + n(n+1)P_{n-1}(x) = 0$$

5) Dérivons la relation établie à la question 4. Il vient :

$$P_{n}''(x) + n(n+1)P_{n-1}'(x) = 0$$

Or, en utilisant le résultat de la question 4 au rang n – 1, on a :

$$P_{n-1}'(x) = -n(n-1)P_{n-2}(x)$$
, et donc $P_n''(x) = n^2(n-1)(n+1)P_{n-2}(x)$

La quantité à étudier $A = (1 + x^2) P_n''(x) - 2nxP_n'(x) + n(n+1)P_n(x)$ peut être écrite :

$$A = n^{2}(n-1)(n+1)(1+x^{2})P_{n-2}(x) + 2n^{2}(n+1)xP_{n-1}(x) + n(n+1)P_{n}(x)$$

=
$$n(n + 1)[n(n-1)(1 + x^2)P_{n-2}(x) + 2nxP_{n-1}(x) + P_n(x)]$$

Or la quantité entre crochets n'est autre que, écrite au rang n-1, celle qui est considérée dans la relation E, donc égale à 0.

Exercice n° 3

1) Ln(1 + x)
$$\approx$$
 x - $x^2/2 + x^3/6$

2) Pour
$$x \neq 0$$
, Lnf(x) = -1 + (x + 2)/2x Ln(1 + x) \approx - $x^2/12$

$$f(x) \approx e^{-x^2/12} \approx 1 - x^2/12$$

Donc Lnf(x) \rightarrow 0 quand x \rightarrow 0 et donc f(x) \rightarrow 1 quand x \rightarrow 0 ; or 1 = f(0) donc f est continue en 0.

Dérivée en 0 :

$$[f(x) - f(0)]/x \approx -x/12 \rightarrow 0$$
 quand $x \rightarrow 0$

$$f'(0) = 0$$

3) Soit $x \neq 0$; en passant par le Ln:

$$f'(x)/f(x) = [-x^{-2}Ln(1+x) + (x+2)/2x(1+x)]$$

$$f'(x) = f(x) x^{2} [-Ln(1+x) + \frac{1}{2} (1+x-(1+x)^{-1})]$$

D'où:

$$f'(x) = x^{-2} \varphi(x) f(x), x \neq 0$$

f est continue sur] -1, $+\infty$ [, ϕ est continue sur] -1, 0[et]0, $+\infty$ [, et l'application x $\to x^2$ est continue sur] -1, $+\infty$ [, nulle en 0. Donc f' est continue sur] -1, 0[et]0, $+\infty$ [.

Au voisinage de x = 0:

$$\phi(x) = \frac{1}{2} \left[1 + x - (1 + x)^{-1} \right] - \ln(1 + x) \approx \frac{1}{2} \left[1 + x - (1 - x + x^2 - x^3) \right] - (x - x^2/2 + x^3/6)$$

$$= -x^3/6$$

$$f'(x) \approx (1 - x^2/12) (-x^3/6)/x^2$$

Donc $f'(x) \to 0$ quand $x \to 0$, donc f' est continue en 0 (puisqu'on a démontré en question 2 que f'(0) = 0).

4) On établit facilement que $\varphi'(x) = x^2/2(1 + x)^2$, donc positive.

 φ est donc croissante, nulle en x = 0, et donc négative sur] - 1, 0[, positive pour x > 0.

5) Comme f' a le même signe que φ , f' est négative sur] -1, 0[, nulle en 0, positive pour x > 0; f est donc décroissante sur] -1, 0[, croissante pour x > 0, et passe par un minimum en x = 0 tel que f(0) = 1.

On en déduit que, $\forall x > -1$, $f(x) \ge 1$.

ECOLE NATIONALE SUPERIEURE DE STATISTIQUE

ET D'ECONOMIE APPLIQUEE

ABIDJAN

AVRIL 2003

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTION ECONOMIE

CORRIGE DE L'EPREUVE D'ANALYSE D'UNE DOCUMENTATION STATISTIQUE

Exercice n° 1

 Soit X la variable aléatoire : nombre de postes informatiques défectueux parmi les 3 retenus

$$P(X=0) = \frac{C_{18}^3 C_2^0}{C_{20}^3} = 0.716$$

$$P(X=1) = \frac{C_{18}^2 C_2^1}{C_{20}^3} = 0,268$$

$$P(X=2) = \frac{C_{18}^1 C_{2}^2}{C_{20}^3} = 0.016$$

2) Si m est le nombre de pièces défectueuses dans un lot de 20 pièces, on a :

$$P(X=0) = \frac{C_m^0 C_{20-m}^3}{C_{20}^3} = \frac{(20-m)(19-m)(18-m)}{20x19x18}$$

m=0	P=100%	m=4	P=49,1%	m=8	P=19,3%	m=12	P=4,9%	m=16	P=0,4%
m=1	P=85%	m=5	P=39,9%	m=9	P=14,5%	m=13	P=3,1%	m=17	P=0,1%
m=2	P=71,6%	m=6	P=31,9%	m=10	P=10,5%	m=14	P=1,8%	m=18	P=0%
m=3	P=59,6%	m=7	P=25,1%	m=11	P=7,4%	m=15	P=0,9%	m>18	P=0%

3) Si on teste une machine supplémentaire (soit 4), alors P(X=0) est égal à 0,632 (au lieu de 0,716 pour 3 machines testées). L'espérance de perte financière moyenne lié à l'acceptation du lot des 20 machines à tort diminue alors de 1432 euros à 1264 euros, soit une diminution de 168 euros. Comme le coût d'un test est de 200 euros, le conseil est de ne pas envisager l'augmentation de l'échantillon.

Exercice n° 2

Calcul des ventes des cigarettes LAFUME aux conditions économiques du 1^{er} janvier 1996

(en millions d'euros)

1 ^{er} janvier	Taux d'inflation annuel	Indice des prix (base 100 au 1/1/96)	Ventes en millions d'euros courants	Ventes en millions d'euros constants
1996	-	100	1000	1000
1997	5%	105	1197	1140
1998	8%	113,4	1508	1330
1999	3%	116,8	1864	1596
2000	6%	123,8	2538	2050

Exercice n° 3

Pas de corrigé type.