В.	Increasing the pressure at constant temperature.
C.	Adding a catalyst at constant temperature and pressure.
(iii).	What is the effect of increase in temperature at constant pressure on the value of the equilibrium constant?
(c) De	6 marks fine 'standard electrode potential' of an electrode system.
(i). A.	ven the following redox potentials $I_{2(aq)} + 2e^- \rightleftharpoons 2I_{(aq)}^- \qquad \qquad E^\theta = +0.54 \text{ V}$ $S_2O_{6(aq)}^{2-} + 2e^- \rightleftharpoons 2S_2O_{3(aq)}^{2-} \qquad E^\theta = +0.10 \text{ V}$ Select the species which is the strongest Reducing agent
B.	Oxidising agent
(ii).	Write the cell diagram when the half cells are coupled and calculate the emf of the cell.
(i).	Plain the following observations: The bond dissociation energy of the hydrogen molecule (H ₂) is greater than that of the hydrogen molecule ion (H ₂ ⁺) Both aluminium and carbon are solid, aluminium forms sheets whereas carbon breaks
<u></u>	into pieces when hammered.
(iii).	Ammonia boils at -33.3°C while phosphine boils at -87.7°C.
(f) (i)	state and briefly explain the shapes of the following substances: Substance Shape Explanation
	NH ₃
	BF ₃
(ii).	Draw the electron density map for the hydrogen chloride molecule.
	5 marks Total = 20marks

SET 6: SECTION A (CGCEB 2014)

General and Physical Chemistry

1. (a)	•	ation and reduction take place simultaneously in mation in terms of electron transfer		cesses.
	Given th	ne following half cell reactions and their standard e	electrode potential	
	in reactio	Half reactions	E ⁰ /V	
	A	$Cu^{2^{+}} + 2e^{-} \rightleftharpoons Cu_{(s)}$	+0.34	
	В	$Zn_{(a\ q)}^{2+} + 2e^- \rightleftharpoons Zn_{(s)}$	-0.76	
•	C	$Cr_2O_{7(aq)}^{2-} + 14H_{(aq)}^+ + 6e^- \rightleftharpoons 2Cr_{(ac_l)}^{3+} + 7H_2O_{(l)}$	+1.33	-
	D	$I_{2(aq)} + 2e^- \rightleftharpoons 2I_{(aq)}^-$	+0.54	
	E	$Fe_{(aq)}^{3+} + e^- \rightleftharpoons Fe_{(aq)}^{2+}$	+0.77	
(i).		of the species in A-Eis the most powerful oxidising		ason for
T emig	your.cn	oice		**************************************
(ii)		s'the strongest reducing agent? Give reason for yo		
(iii).	Write th	refeelf diagram and calculate the e.m.f of a cell made	de by coupling D	and E
	**************************************		6 marks	
(c)		NH2)2CO] is prepared by reacting ammonia with ca		
	the equa	tion. $2NH_{3(g)} + CO_{2(g)} \longrightarrow (NH_2)_2CO_{(s)} +$	- H-O	
	In one p	process 632.2 g of NH ₃ react with 1142 g of CO ₂	1120(1)	
u u(i).	_	te the mass of urea formed	ිස බල සා ස ස බ බ සා සා සා සා සා සා සා සා ම බ සා සා මස බල සා සා සා බ බ සා සා සා සා සා සා සා ම බ සා සා	00 EN EN EO EO EO EO EO EN EN EN
	per the tex tex tex tex tex tex tex tex tex te		per une des par late dat dat dat dat dat dat dat ber bet bet de de de de per per per per de.	
*				
(ii).	How ma	any grams of CO ₂ were left at end of the reaction?	60 to co que co 101 to 101 to co co co co co co to 101 to	
(iii).	Suggest	a structure for (NH ₂) ₂ CO	e حق الدولان و الحوج عود الدالد الدالد الدولان الدول	o é ^c o ma a a a a a a
(iv).	Calcula	te the percentage of nitrogen in urea		
		***************************************	. An Red arts day dits dits that the term that the first was 455 was 1651 first day that day	4.c.2.00000000
(v).		ea be soluble in water?		

(d) At the end of an investigative research to determine $\triangle H_i^g$ (LiF _(s)), a student came out with the following energy cycle. Li ⁺ (g) + F ⁻ (g) Li ⁺ (g) + F ₂ (g) D LiF(s) (i). What are the energy changes represented by B and C? C (ii). From a book of data, A = +230.5 kJ mol ⁻¹ , B = +192 kJ mol ⁻¹ and C = -1017 kJ m Calculate the value of D 3 marks Total= 20 marks					0	10 marks
Li ⁺ (g) + F(g) A Li ⁺ (g) + ½ F ₂ (g) D LiF(s) What are the energy changes represented by B and C? B C (ii). From a book of data, A = +230.5 kJ mol ⁻¹ , B = +192 kJ mol ⁻¹ and C = -1017 kJ m Calculate the value of D 3 marks Total= 20 ma 2. This question is on bonding, chemical equilibrium and phase equilibrium.				determine 🔠	Hf (LiF _(s)), a	student came out
Li ⁺ (g) + F(g) A Li ⁺ (g) + ½ F ₂ (g) D LiF(s) What are the energy changes represented by B and C? B C C Cii). From a book of data, A = +230.5 kJ mol ⁻¹ , B = +192 kJ mol ⁻¹ and C = -1017 kJ m Calculate the value of D 3 marks Total = 20 ma 2. This question is on bonding, chemical equilibrium and phase equilibrium.		A	Li ⁺ (g)	+F(g)		
LiF(s) i) What are the energy changes represented by B and C? B C- Cii) From a book of data, A = +230.5 kJ mol ⁻¹ , B = +192 kJ mol ⁻¹ and C = -1017 kJ m Calculate the value of D 3 marks Total = 20 marks Total = 20 marks		В				
LiF(s) What are the energy changes represented by B and C? B C This question is on bonding, chemical equilibrium and phase equilibrium.		Li ⁺ (g)	+F(g)			
LiF(s) What are the energy changes represented by B and C? B C This question is on bonding, chemical equilibrium and phase equilibrium.		ÎA			C	
LiF(s) What are the energy changes represented by B and C? B C From a book of data, A = +230.5 kJ mol ⁻¹ , B = +192 kJ mol ⁻¹ and C = -1017 kJ m Calculate the value of D 3 marks Total = 20 ma This question is on bonding, chemical equilibrium and phase equilibrium.		$L_{i}^{\dagger}(g)$	$+\frac{1}{2}F_2(g)$			
What are the energy changes represented by B and C? B C i). From a book of data, A = +230.5 kJ mol ⁻¹ , B = +192 kJ mol ⁻¹ and C = -1017 kJ m Calculate the value of D 3 marks Total = 20 ma This question is on bonding, chemical equilibrium and phase equilibrium.		\mathbf{D}	_		,	
What are the energy changes represented by B and C? C		\				
i). From a book of data, A = +230.5 kJ mol ⁻¹ , B = +192 kJ mol ⁻¹ and C = -1017 kJ m Calculate the value of D 3 marks Total= 20 ma This question is on bonding, chemical equilibrium and phase equilibrium.		,	LiF(s)		
i). From a book of data, A = +230.5 kJ mol ⁻¹ , B = +192 kJ mol ⁻¹ and C = -1017 kJ m Calculate the value of D 3 marks Total= 20 ma This question is on bonding, chemical equilibrium and phase equilibrium.). What are the	energy chang	ges represented	by B and C'	?	
Calculate the value of D 3 marks Total= 20 ma This question is on bonding, chemical equilibrium and phase equilibrium.	C	******************				
Total= 20 ma. This question is on bonding, chemical equilibrium and phase equilibrium.	i). From a boo Calculate th	k of data, A = e value of D	+230.5 kJ mo	I ⁻¹ , B = +192	kJ mol ⁻¹ an	d C = -1017 kJ mol
Total= 20 ms. This question is on bonding, chemical equilibrium and phase equilibrium.	and and any one	and, and and any page and and any and and and any and and and and and and and any				
This question is on bonding, chemical equilibrium and phase equilibrium.						
	This question is	on bonding.	chemical equil	ibrium and r	hase equilib	
bond?	(a) (i) What is	the difference	e between a sir	nple covalen	t bond and a	
	ii). Draw the do	at and aross d	iagram as well	og the ghome	of NT. mak	saula Cina tha han

5 mark

(b) The equilibrium constant for the reaction given below can be determined experimentally when known amounts of hydrogen iodide in a sealed tube are heated until equilibrium is attained.

(iii). Identify and account for the bonding in sodium bromide (NaBr) ------

 $2HI(g) \rightleftharpoons H_{2(g)} + I_{2(g)} \Delta H = -63.0 \text{kJ mol}^{-1}$

- (i). State the equilibrium law.
- (ii). Write the equilibrium constant expression for the reaction. ------

(iii).	What parameter or property must be measured to enable the calculation of the equilibrium constant?
	How is the value of the equilibrium constant affected by? crease in pressure? Explain
A de	crease in temperature? Explain
	5 marks
(i).	xplain the following: Saturated vapour pressure of a liquid
(ii).	An azeotropic mixture.
	2 marks mixture of hexane and heptane forms an ideal solution. Given that their saturated apour pressures at 100 °Care respectively 790 mmHg and 350 mmHg. Calculate: The mole fraction of each component in a mixture containing 50.0 g of hexane and 70.0g of heptane.
(ii).	
(11),	The partial pressure of each component in the mixture
fo	raw well labelled vapour pressure/composition and boiling point/ composition curves or the mixture above
	Total = 20 marks
(a) T	his question is on atomic structure, acid-base equilibria and chemical kinetics. he emission spectrum gives information on the electronic configuration of atoms. For cost elements the emission spectrum consists of a series of lines of different energies What does each series of lines represent?
(ii).	Why are there several lines in each series?
(iii).	How can the ionisation energy of an element be determined from its emission spectrum?
(iv).	What other method could be used to determined ionisation energies? How can this method be used to obtain information on electronic structure?

E-CHEMISTRY SELF	TUTORIALS	FOR	ADVANCED	LEVEL

	하는 하시 하루 구매 전에 하지 않아 ㅠㅠ 선생 있는 없이 보니 모모 모모 되었다.	. 내 때 다 차 전 전 역 웹 액 때 때 는 다 다 한 성 이 다 하 때 때 때		5 marks	र गर्थ रेवेड बळा बळा प्रथम क्या तक का का
(b) (i)	Give the	Bronsted-Lawry de	efinition of acids and b	ases.	***************************************
(ii). F Ni	or acid-base ed H ⁺ _{4(aq)} + OH _{(aq}	quilibrium below in \Rightarrow NH _{3(aq)} + H ₂ (dicate the acid-base cor O(I)	njugate pairs	
C_6	H5COOH and	0.05 mol dm ⁻³ of po	on containing 0.05 molotassium benzoate C6H	dm ⁻³ benzoic acid sCOOK (Ka for benzo	ic acid
 (ii).	solution?	addition of a few	drops of molar nitric ac	id affect the pH of this	ා තැන තැන තැන කැත ග
(iii).	What general	name is given to s	uch a solution?	සස ගෙන කතනයක් සම එළුණ කළුණ එමණ එක්ක	
	n jugate base is	pink in solution	acid with ka = 10 ⁻⁹ mo	$(-1)^{n} = (-1)^{n} $	
(ii).	of this indica	tor in a solution of	of pink particles to the pH = 9		, , , , , , , , , , , , , , , , , , ,
fo	ne progress of t llowed by with en titrating with	he reaction between drawing samples on the standard thiosuph $I_{(aq)}^{-} + IO_{3(aq)}^{-} +$	n iodide ions and potas f the reaction mixture a ate solution. The reacti $6H_{(aq)}^{+} + 4e^{-} \rightarrow I_{2(aq)}$ to follow up this reacti	3 marks sium iodate(V) can be t various times, quench on equation is $(1) + 3H_2O_{(1)}$	hing and
(ii).	How would y	ou quench the reac	tion?		**************************************
(iii).	In one such e		wing data were obtaine tration (mol dm ⁻³)of	Initial reaction	
		I (aq)	KIO3(aq)	Rate/mol dm ⁻³ s ⁻¹	1
	1 2	0.019 0.038	0.015 0.015	3.5x10 ⁻⁶ 7.0x10 ⁻⁶	
	3	0.038	0.030	28.0x10 ⁻⁶	

		5 marks Total = 20 marks
SET 7 :	SECTION A (CGCEB 2015)	
Genera	l and Physical Chemistry	
1. (a)	What do you understand by the term first ionization energy?	
	The hydrogen spectrum shows different series of lines known as Balmer, Paschen etc What do the lines represent?	1 mark s the Lyman,
(ii).	What is the difference between the Lyman and the Balmer serie	
(iii).	obtained from the emission spectrum of the element.	that can be
		3 marks
(i).	The first 8 successive ionization energies in kJ/mol of an element not the usual symbol of the element) are: 789,1 577,3232,4356,16091, 19755,23789,29253 Write the electronic configuration of the outermost shell of M	
(i). (ii).	The first 8 successive ionization energies in kJ/mol of an element not the usual symbol of the element) are: 789,1 577,3232,4356,16091, 19755,23789,29253 Write the electronic configuration of the outermost shell of M Predict the group of the periodic table to which M belongs.	nent M (where Mis
(i). (ii). Expla	The first & successive ionization energies in kJ/mol of an element inot the usual symbol of the element) are: 789,1 577,3232,4356,16091, 19755,23789,29253 Write the electronic configuration of the outermost shell of M Predict the group of the periodic table to which M belongs. in your reasoning	nent M (where M is
(i). (ii). Expla	The first 8 successive ionization energies in kJ/mol of an element not the usual symbol of the element) are: 789,1 577,3232,4356,16091, 19755,23789,29253 Write the electronic configuration of the outermost shell of M Predict the group of the periodic table to which M belongs. in your reasoning	a marks 2 marks ular force?
(i). (ii). Expla (d) (e)(i) (ii). (The first 8 successive ionization energies in kJ/mol of an element inot the usual symbol of the element) are: 789,1 577,3232,4356,16091, 19755,23789,29253 Write the electronic configuration of the outermost shell of M Predict the group of the periodic table to which M belongs. in your reasoning	3 marks 2 marks ular force?

10 ⁻⁵ mol dm ⁻³ CH ₃	ults from the ado		CJ-I3COONa. Calculate the pH 04 M NaOH to the solution. (I
(a) (i) Define	See 10 of a gular		7 marks Total = 20 ma
(a) (i) Define	"mole of a subs	ance.	
Calculate the m solution. (RAM	E = 56, C1 = 3	35.5)	50 cm ³ of 0.1 M iron(III) chlor
	olved in water, to behaviour.	the temperature of the	3 marks of the solution rises, but when e solution falls, explain the
energy).			nine its heat of solvation (hydra
Calculate the so			
Calculate the so	lvation energy.	d by "order of a reac	
Calculate the so	olvation energy.		tion"?
Calculate the so	olvation energy.	d by "order of a reac	tion''?
Calculate the so (i) What d	olvation energy. lo you understan ving data for the Initial [A]	d by "order of a reac reaction: A + 2B → Initial [B] mol	tion"? C Rate of formation of C mo
Calculate the so	olvation energy. lo you understan ving data for the Initial [A] mol dm ⁻³	reaction: A + 2B → Initial [B] mol	tion''? C Rate of formation of C modulus dm-3s-1
Calculate the so	olvation energy. lo you understan ving data for the Initial [A] mol dm ⁻³ 0.10	reaction: A + 2B → Initial [B] mol dm ⁻³ 0.10	tion"? C Rate of formation of C modum-3s-1 " 0.001

Α.	Determine the overall order of the reaction
B.	Write the rate expression and calculate the value of the rate constant and give its units.
C.	Based on the rate expression, suggest a mechanism for the reaction.
e) i)	6 marks Trichloromethane (CHCl ₃) and ethylethanoate (CH ₃ CO ₂ C ₂ H ₅) form a completely miscible solution which does not obey Raoult's law. State Raoult's law
ii)	Explain why the liquid mixture would deviate from Raoult's law
iii)	Predict and explain the change in temperature when the two liquid are mixed
iv)	Draw a well-labelled diagram of the variation of the total vapour pressure against composition for the mixture.
	6 marks Total=20 marks

SET 8: SECTION A (CGCEB 2016)

Gene	ral and l	Physical Chemistry	e same e s			
1. (a) (i)	Define the second ion	nisation ener	gy of fluorine -		
(i	i)	Write an equation to	represent the	second ionisati	on energy of fluorine	wine Mile Steel wide 1550 (15th 15th 45th 1
	ii) fluorine	Using the axis below.	, sketch a gra	ph to show the	successive ionisation e	nergie
	5	e en	y: s a			
log I.E		A 0.00 0 0				
1 m 31	A ² 8 8 8 1	a wa o e e	wa wa e Saan Ulu w			
erv G	V) Live table	number of ionisation Give reasons for the	shape of you	r oranh		
	and the any per per can the said the day and	Draw the "dot and cr			6 marks d H ₂ CO ₃	nn ann ann dae ann dae eal an
(i	yes the same ago sine yes gain and one same one	he resonance structure		23 anion.		
	ii) Comp		by stating th	ne molecular sh	apes and bond angles	of th
	Species		Molec	ular shape	Bond angles	
		CF ₄		communication of the second of	1/54	
		NF ₃				

7 marks

 CH_2Cl_2

H₃0⁺

Experiment	Initial	Initial	Initial rate of production
	[H ₂]mol dm ⁻³	[l ₂]mol dm ⁻³	of HI mol dm ⁻³ s ⁻¹
1	0.0113	0.0011	1.9×10^{-23} .
2	0.0220	0.0033	1.1×10^{-22}
3	0.0550	0.0011	9.3×10^{-23}
4	0.0220	0.0056	1.9×10^{-22}

(i)]	Determine the order of the reaction with respect to H ₂ and I ₂ . (A) Order with respect to H ₂
	(B) Order with respect to I ₂
(ii)	What is the overall order of the reaction?
(iii)	Write an expression for the rate law
(iv)	Determine the value of the rate constant and state its units.
	7 marks
	(a) (i) Explain how positive and negative deviations from Raoult's law arise when liquids are mixed. gative deviation
	sitive deviation
	igher or lower boiling point? Explain
(b)	(i) Define the "mole of a substance"
	How many moles of carbon atoms are there in 1.0 mole of sucrose, C ₁₂ H ₂₂ O ₁₁ ? (RAM H=1.0, C=12.0, O=16.0)
(iii nı	