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1. The variables x and y are functions of t and satisfy the differential equations — +2x=yand =+x=0.

d?x dx ;
a) Show that ey -+ 2-&? +x=0 (1 mark)

b) Find the general solution for x, of the differential equation in (a) above, and deduce from

j—: +2x =y the general solution for . (4 marks)
c) Hence or otherwise, find x and y in terms of t, given that x = 1 and = 0, when t = 0. (2 marks)

2. a) Show that the set M of all matrices of the form ( g} ?11) ,n €Z, forms an Abelian group under

multiplication of matrices. (Assume associativity ) ' {4 marks)
. i x3 - . S .
b) Given that (x) = 212)?’ (i) express f(x) in partial fractions (3 marks)
(i) hence, show that fol fxide= ?—12~ (3 marks)
3. a). Prove by mathematical induction that vV n € Z*, ¥, (r? + )r! = n(n + 1)! (4 marks)
b) (i) Find the gcd of 54 and 21 and express it in the form d =54x + 21y. (2 marks)
(i) Hence, solve the linear congruence 54x = 12(mod21) . h (3 marks)

4. a). Solve for x and y the equations coshx = 3sinhy and 2sinhx = 5 — 6coshy, expressing your

answers in logarithmic form. | (4 marks)
b) Given that r2 = -—--?35— is the equation of an ellipse, find
25—-16sin%8 _ :
(i) the: Cartesian eqt_:ation olf the ellipse 2 (2 marks)
(ii) the eccentricity of the ellipse - g * (1 mark)
(iii) the coordinates of the foci of the ellipse , .{1 mark)
(iv) the equations of the directrices of the ellipse (1 mark)

(v) the equations of the asymptotes of the ellipse ) (I mark)
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5. a) The position vectors of four non-coplanar points 4, B, C and D relative to the origin O are @, b , ¢ and d
respectively, where & = 2i = 3j + 5k,b = i + 6j — k, ¢ = 5{ + k and d = 3/ — 2k.
Find (i) the Cartesian equaticn of the plane ABC, | (3 marks)
(i) the volume of the tetrahedron ABCD. (3 marks)

b) Find the polar coordinates of the points on the cardiod r = a(1 + cos0) at which the tangent lines

are parallel to the initial line. (5 marks)

6. a) (i) Giventhat x = 2sin20, show that (_z_a;:{) = cotf (1 mark)

(i) Hence, show also that the area of the finite region bounded by the curve xy? = 4a%(2a — x),
the x-axis and the ordinates x = a and x = 2a is a?(w — 2) ’ (3 marks})
This area is rotated completely about the x-axis.
(iii) Find the volume of the solid of revolution obtained. (2 marks)

(iv) Hence, using a theorem of Pappus, deduce that the distance of the centroid of this area from

the x-axis is 2a (2381 (1 mark)
-2
b) Giventhatl, = f01(1 + x2)" dx, n € Z*, show that (2n + 1)1, = 2" + 2niInl,_, (4 marks)
- 2 11
7. The linear transformation T: R® —» R3 has matrixM=| 3 1 3
-1 -2 4
a) Show that every point in space is mapped onto the plane 5x =3y +z =0 (4 marks)
Find the image under T of
e P2 o Al Fod
b) the imeT R : (2 marks)
c) theplanex+y—-z=-1 ' (3 marks)
8. a) (i) FindYo2o(2") ' : (1 mark)
) 4-2cos0+2isin
(i) Giventhatz = -;- (cosB + isind), show that Y2 (27) = e (3 marks)
Y .
(iii) Hence, find Yopep = sin” 8) (1 mark)

b) Two similarity transformations T and M on a complex plane are definedby T:z — 3iz + 2

M:z— (2—0)Z-3+2i
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(i) Find theinverse, T~%, of T (1 mark)
(ii) Find the composite transformation M o T, stating its radius (3'_ m;_rks)
9. A numerical function f of real variable x is defined by f(x) = 2x +3 +In C—i:
a) Determine the domain of definition Dy of f. (2 marks)
b) Calculate the limits at the bounds of Dy (2 marks)
c) Evaluate lim, 1o {f(x) — (2x + 3)}, and hence, determine the equations of the asymptotes
to the representative curve (Cy) of f. (2 marks)
3
d) Showthat f'(x) = %-_——11, and construct the table of variation of f. (3 marks)
e) Hence, sketch the graph of y = f(x) (2 marks)
f) Hence, find the coordinates of the centre of symmetry of the curve (Cr) (2 marks)
| Up= -1
10. a) Asequence (U,) is defined recursively by (Uy,) : Uy = 4
. 1 ; &
Unsz = 3Uns1 +3Un
Given also that another sequence .(l/;l) is definedby ¥, = Upyy —Up ,nEN,
(i) showthat (I,)isa convergent geometric sequence, and express V;, in terms of n (3 marks)
_ _ n
(i) by evaluating £P22(V,) = X3 (Up41 — Up), show that U, =2 —3 (—. %) ; (3 marks)
(iii) hence, find lim,_,o Uy, (1 mark)
. 1
b) (i) Show that when expanded as a series in ascending powers of ! up to and including the
o & 2% ¥ 2y ety (_1.)
termin oy In (4x+1) ~ In (4) A + s \a2 (3 marks)
(3 marks)

xZ
(i) Hence, show that (ﬁ% ~ e(1 — 8x + 32x2)

END
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