

Lycée Classique d'Abidian	DEVOIR SURVEILLE DE MATHEMATIQUES	2021 - 2022
Classe : Tle D	Durée : 2h	Date: 10 / 11 / 21

Exercice1

Pour chacune des affirmations suivantes, une seule des réponses est exacte. Recopie le

numéro de chaque affirmation en y ajoutant la lettre qui convient.

N.	AFFIRMATIONS	Réponse A	Réponse B	Réponse C
1	La probabilité de gagner une partie d'un jeu est $\frac{1}{3}$. On fait 3 parties successives et indépendantes de ce jeu. la probabilité de gagner exactement 2 vois est :	$\frac{2}{3}$	2 7	2 9
2	On lance une pièce de monnaie équilibré 4 fois de suite. La probabilité d'obtenir au moins une fois le côté pile est :	1/16	15 16	$\frac{1}{4}$
3	A et B sont deux événements tels que $P_B(A) = 0.25$, $P(A \cap B) = 0.15$. la valeur de $P(B)$ est :	0,06	0,6	0,3
4	Soit f une fonction définie d'un intervalle I sur un intervalle f . Si f est continue et strictement décroissante sur I alors sa bijection réciproque g est :	Strictement décroissante sur I	Strictement décroissante sur J	Strictement croissante sur J

Exercice 2

Ecris sur ta copie le numéro des affirmations ci-dessous suivi de vrai si l'affirmation est vraie ou faux si l'affirmation est fausse.

- 1) Ibo joue avec un dé cubique équilibré. Il lance le dé 2 fois de suite. S'il obtient 4 ou plus il gagne 500f, sinon il perd 100f. c'est une épreuve de Bernoulli.
- 2) $f(x) = \frac{x^2 + x 6}{4 x^2}$ si $x \ne 2$ et $f(2) = -\frac{5}{4}$ alors f est continue en 2.
- 3) Si $f(x) = \frac{x\sqrt{x}-1}{x}$ alors (Cf) admet une branche parabolique de direction celle de (OJ) en+ ∞ .
- 4) Soit g une fonction défini sur $]-\infty;-1[\ \cup\]-1;+\infty[$ et $\lim_{x\to -1}g(x)=-2022$ alors g est prolongeable par continuité en -1.

Exercice 3

Une usine d'horlogerie fabrique une série de montres. Au cours de la fabrication peuvent apparaître deux types de défaut, désignés par a etb.

2% des montres fabriquées présentent le défaut a et 10% le défaut b .

Une montre est tirée au hasard dans la production. On définit les évènements suivants :

A: «La montre tirée présente le defaut a »

B: «La montre tirée présente le défaut b »

C: ≪La montre ne presente aucun des deux défauts≫

D: «La montre tirée presente un et un seul des deux défauts»

On suppose que les évènements A et B sont indépendants

- 1) Montre que la probabilité de C est égale à 0,882 /
- 2) Calcule la probabilité de D
- 3) Au cours de la fabrication, on prélève au hasard et successivement avec remise 5

On note X la variable aléatoire qui à chaque prélèvement de 5 montres associe le nombre de montres ne présentant aucun des deux défauts.

- a) Justifie que X suit une loi binomiale dont on précisera les paramètres
- b) Calcule la probabilité que 3 montres au moins ne présentent aucun des deux défauts
- c) Calcule l'espérance mathématique E(X) et la variance V(X).

Exercice 4

Soit f une fonction definie sur \mathbb{R} par $f(x) = x + \frac{1}{x} - \frac{3}{x^2}$ et (C) sa courbe représentative dans le plan muni d'un repère orthonormé (0,1,1)

- 1) Calcule la limite de f en 0 puis interprète
- 2) a) calcule la limite de f en -∞ et en +∞
 - b) justifie que la droite (D) d'équation y = x est une asymptote à (C) en $+\infty$ et $-\infty$
- 3) a) justifie que $\forall x \in \mathbb{R} \setminus \{0\}, f'(x) = \frac{(x+2)(x^2-2x+3)}{x^3}$
 - b) étudie le sens de variation de f puis dresse son tableau de variation.
 - c) justifie que l'équation f(x) = 0 admet une unique solution α dans $]0; +\infty[$ et que $1.2 < \alpha < 1.3$
- 4) Démontre que $\forall x \in]-\infty; 0[\cup]0; \alpha[; f(x) < 0 \text{ et } \forall x \in]\alpha; +\infty[, f(x) > 0]$

Exercice 5

Dans le district sanitaire de Cocody le médecin-chef effectue une enquête auprès d'un échantillon de personnes âgées de plus de 65 ans. Cette enquête révèle que :

- 58% des personnes âgés de plus de 65 ans sont diabétiques
- 5% de ces personnes sont atteintes de la covid-19 et parmi celles-ci les $\frac{2}{3}$ sont diabétiques.

Au cours d'une campagne de sensibilisation sur la maladie à covid, le médecin-chef affirme que dans cette population des personnes âgées de plus de 65 ans, les diabétiques risquent d'avantage de développer la maladie à covid que les non-diabétiques.

Koudou, un de tes camarades de classe ayant assisté à cette campagne, te soumet l'affirmation du médecin.

A l'aide de tes connaissances en mathématiques, donne ton avis sur cette affirmation.