

A QUICK LOOK AT MATHEMATICS PAPER 2 SYLLABUS D (4024/2)
FINAL EXAMINATION QUESTIONS (2016-2018) WITH ANSWERS

MATHEMATICAL FORMULAE

$$
\int a x^{n} d x=\frac{a x^{n+1}}{n+1}+c
$$

Conical Frustum $\mathbf{V}=\frac{1}{3} \pi\left(R^{2} H-r^{2} h\right)$
Pyramid frustum with a square base and top $\mathbf{V}=\frac{1}{3} h\left(L^{2}+l^{2}+L l\right)$
Mean $=\bar{x}=\frac{\sum f x}{\sum f}, \quad S D=\sqrt{\left\{\frac{\sum f(x-\bar{x})^{2}}{\sum f}\right\}}=\sqrt{\left\{\frac{\sum f x^{2}}{\sum f}-(\bar{x})^{2}\right\}}$
$n^{\text {th }}$ term for $\mathbf{A P}: T_{n}=a+(n-1) d, \quad \mathbf{G P}: T_{n}=a r^{n-1}$
AP: $\boldsymbol{S}_{\boldsymbol{n}}=\frac{n}{2}[2 a+(n-1) d], \quad \mathbf{G P}: \boldsymbol{S}_{\boldsymbol{n}}=\frac{\left(1-r^{n}\right)}{1-r}, \mathrm{r}<1$
Cosine Rule for $\triangle \mathrm{ABC}: a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A$
Compiled \& Solved by Kachama Dickson. C \& Chansa John
Contacts: 0966295655/0955295655/0976221226
Email: kachamadickson@gmail.com
: Johnchansa1992@gmail.com

Both Mr. Kachama. D.C and Mr. Chansa J are graduates from the Copperbelt University (CBU). Kachama D.C is a holder of bachelor's degree in Mathematics Ed (BSc MA.Ed) while Mr. Chansa. J is a holder of bachelor's degree in Pure and Applied mathematics. To show their competence and eligibility in mathematics, the two individuals have produced many mathematics pamphlets and this is one of their best joint pamphlet.

This pamphlet consists of final examination questions from 2016-2018 for both grade twelve (12) and G.C.E ordinary levels. Answers with all necessary working methods are shown at the end of questions. All the Questions are copied directly from the examination past papers for both July/August and October/ November exams.
"We believe, this pamphlet will be of great help to you even as you prepare for your final examinations:"

TABLE OF CONTENTS

Topic page

1. Algebra 3
2. Matrices 4
3. Sets 5
4. Probability 7
5. Sequences \& Series 8
6. Pseudo code \& Flow chart 9
7. Loci \& Construction 12
8. Calculus 14
9. Vector Geometry 15
10. Trigonometry 17
11. Mensuration 20
12. Earth Geometry 22
13. Quadratic Function 24
14. Linear Programming 28
15. Statistics 31
16. Transformation 34
17. Answers 38
CAUTIONS: NO PART OF THIS PAMPHLET MAY BE REPRODUCED WITHOUT A PERSSION OF THEAUTHORS
ANY ERRORS IN THIS PAMPHLET ARE THE RESPONSIBILTY OF THE AUTHOR

TOPIC 1: ALGEBRA

1. 2018 Oct/Nov Exams

(a) Simplify $\frac{b-a}{a^{2}-b^{2}}$
(b) Simplify $\frac{12 d n^{3}}{15 c d^{3}} \div \frac{9 c^{3} n}{10 c^{2} d^{2}}$
(c) Express $\frac{3}{x+1}-\frac{4}{x-1}$ as a single fraction in its lowest terms.

2. 2018 J uly/Aug Exams

(a) Simplify $\frac{7 s t^{3}}{15 u^{3} v^{2}} \times \frac{5 u^{3} v}{28 s^{3} t^{2}}$
(b) Express $\frac{3}{2 x-5}-\frac{4}{x-3}$ as a single fraction in its lowest terms.
3. 2017 Oct/Nov Exams
(a) Simplify $\frac{14 x^{3}}{9 y^{2}} \div \frac{7 x^{4}}{18 y^{3}}$
(b) Simplify $\frac{2 x^{2}-8}{x+2}$
(c) Express $\frac{1}{x-4}-\frac{2}{5 x-1}$ as a single fraction in its lowest terms.

4. 2017 J uly/ Aug Exams

(a) Simplify $\frac{m^{2}-1}{m^{2}-m}$
(b) Simplify $\frac{p^{2} q^{3}}{4} \times \frac{8}{p q} \div 2 p^{2} q$
(c) Express $\frac{3}{5 x-2}-\frac{2}{x+3}$ as a single fraction in its lowest terms.

5. 2016 October Exams

(a) Simplify $\frac{x-1}{x^{2}-1}$
(b) Simplify $\frac{17 k^{2}}{20 a^{2}} \div \frac{51 k^{2}}{5 a}$
(c) Express $\frac{2}{2 x-1}-\frac{1}{3 x+1}$ as a single fraction in its lowest terms.

TOPIC 2: MATRICES

1. 2018 Oct/Nov Exams, Q1(a)

Given that $A=\left(\begin{array}{cc}4 & -5 \\ 1 & 2\end{array}\right)$ and $B=\left(\begin{array}{ll}8 & y \\ 3 & 5\end{array}\right)$,
(a) find the value of y, for which the determinants of A and B are equal,
(b) hence find the inverse of B.

2. 2018 J ul/August Exams: Q1(a)

Given that $\mathrm{A}=\left(\begin{array}{cc}2 x & 2 \\ 3 & x\end{array}\right)$,
(a) find the positive value of x for the determinant of A is 12 ,
(b) hence or otherwise find A^{-1}.

3. 2017 Oct/Nov Exams: Q1(a)

Given that matrix $\mathrm{M}=\left(\begin{array}{cc}3 & -2 \\ 5 & x\end{array}\right)$
(a) find the value of x for which the determinant of M is 22 ,
(b) hence find the inverse of M.

4. 2017 J uly/ Aug Exams: Q1(a)

Given that $K=\left(\begin{array}{ll}10 & -2 \\ 11 & -2\end{array}\right)$, find
(a) the determinant of K,
(b) the inverse of K.

5. 2016 Oct/Nov Exams: Q1(a)

Given that $Q=\left(\begin{array}{cc}3 & -2 \\ x & 4\end{array}\right)$, find
(a) the value of x, given that the determinant of Q is 2 ,
(b) the inverse of Q.

TOPIC3: SETS

1. 2018 Oct/Nov Exams: Q2(b)

At Sambilileni College, 20 students study at least one of the three subjects; Mathematics (M), Chemistry (C) and Physics (P). All those who study chemistry also study mathematics. 3 students study all the three subjects. 4 students study mathematics only, 8 students study chemistry and 14 students study mathematics.
(i) Draw a Venn diagram to illustrate the information
(ii) How many students study
(a) Physics only
(b) two types of subjects only,
(c) Mathematics and physics but not chemistry.

2. 2018 J ul/Aug Exams: Q3(a)

The diagram below shows how learners at Twatenda School travel to school. The learners use either buses (B), cars (C) or walk (W) to school.

(i) If 22 learners walk to school, find the value of x.
(ii) How many learners use
(a) only one mode of transport,
(b) two different mode of transport.

3. 2017 Oct/Nov Exams: Q1 (b).

A survey carried out at Kamulima Farming Block showed that 44 farmers planted maize, 32 planted sweet potatoes, 37 planted cassava, 14 planted both maize and sweet potatoes, 24 planted both sweet potatoes and cassava, 20 planted both maize and cassava, 9 planted all the three crops and 6 did not plant any of these crops.
(i) Illustrate this information on a Venn diagram.
(ii) How many farmers
(a) Where at this farming block,
(b) Planted maize only
(c) Planted two different crops

4. 2017 J uly/Aug Exams: Q3 (b)

The Venn diagram below shows tourist attractions visited by certain students in a certain week.

(i) Find the value of y if 7 students visited Mambilima Falls only.
(ii) How many students visited
(a) Victoria falls but not Gonya Falls,
(b) Two tourist attractions only,
(c) One tourist attraction only?

5. 2016 October Exams,Q2 (a)

Of the 50 villagers who can tune in to Kambani Radio Station, 29 listen to news, 25 listen to sports, 22 listen to music, 11 listen to both news and sports, 9 listen to both sports and music, 12 listen to both news and music, 4 listen to all the three programmes and 2 do not listen to any programme.
(i) Draw a Venn diagram to illustrate this information.
(ii) How many villagers
(a) Listen to music only,
(b) Listen to one type of programme only,
(c) Listen to two types of programs only.

TOPIC 4: PROBABILITY

1. 2018 Oct/Nov Exams, Q1(b)

A small bag contains 6 black and 9 red pens of the same type. Two pens are taken at random one after the other without replacement. Calculate the probability that both pens
(a) One is black,
(b) are of different colour.

2. 2018 J ul/Aug Exams, Q5 (a)

A box contains identical buttons of different colours. There are 20 black, 12 red and 4 white buttons in the box. Two buttons are picked at random one after the other and not replaced in the box.
(a) Draw a tree diagram to show all the possible outcomes.
(b) What is the probability that both buttons are white?

3. 2017 Oct/Nov Exams, Q2 (a)

A box of chalk contains 5 white, 4 blue and 3 yellow pieces of chalk. A piece of chalk is selected at random from the box and not replaced. A second piece of chalk is then selected.
(a) Draw a tree diagram to show all the possible outcomes.
(b) Find the probability of selecting pieces of chalk of the same colour.

4. 2017 J uly Exams, Q3 (a)

In a box of 10 bulbs, 3 are faulty. If two bulbs are drawn at random one after the other, find the probability that
(a) Both are good.
(b) One is faulty and the other one is good.

5. 2016 Oct/Nov Exams, Q2 (b)

A survey was carried out at certain hospital indicated that the probability that patient tested positive for malaria is 0.6 . What is the probability that two patients selected at random
(a) one tested negative while the other positive,
(b) both patients tested negative.

TOPIC 5: SEQUENCES AND SERIES

1. 2018 Oct/Nov Exams, Q5(b)

The first three terms of a geometric progression are $k+4, k$ and $2 k-15$ where k a positive integer.
(a) find the value of k,
(b) list the first three terms of the geometric progression,
(c) find the sum to infinity.
2. $2018 \mathrm{~J} \mathrm{ul} /$ Aug Exams, Q2(b)

In a geometric progression, the third term is $\frac{2}{9}$ and the fourth term is $\frac{2}{27}$. Find
(a) The first term and the common ratio,
(b) The sum of the first 5 terms of the geometric progression,
(c) The sum to infinity.

3. 2017 Oct/Nov Exams, Q5(a)

For the geometric progression $20,5,1 \frac{1}{4}, \ldots$, find
(a) the common ratio,
(b) the $\mathrm{n}^{\text {th }}$ term,
(c) the sum of the first 8 terms.

4. 2017 July/ Aug Exams, Q2(b)

The first three terms of a geometric progression are $6+n, 10+n$ and $15+n$. Find
(a) the value of n,
(b) the common ratio,
(c) the sum of the first 6 terms of this sequence.

5. 2016 Oct/Nov Exams, 5(b)

The first three terms of a geometric progression are $x+1, x-3$ and $x-1$.
(a) the value of x,
(b) the first term,
(c) the sum to infinity.

TOPIC 6: PSEUDO CODE AND FLOW CHARTS

1. 2018 Oct/Nov Exams, Q6(b)

The program below is given in a form of a Pseudo code
Start
Enter x, y
Let $\mathrm{M}=\operatorname{square} \operatorname{root}(x$ squared $+y$ squared)
IF $\mathrm{M}<0$
THEN display error message " M must be positive"
ELSE
END IF
Display M
Stop
Draw the corresponding flow chart for the information given above.

2. 2018 J uly/Aug Exams, Q5(b)

Study the pseudo code below.
Start
Enter a, r, n

$$
\mathrm{R}=1-r
$$

If $\mathrm{R}=0$ THEN
Print "the value of r is not valid"
Else $\mathrm{S}_{\mathrm{n}}=\frac{a\left(1-r^{n}\right)}{\mathrm{R}}$
End if
Print S_{n}
Stop
Construct a flow chart corresponding to the Pseudo code above.

3. 2017 Oct/Nov Exams, Q6

Study the flow chart below

Write a pseudo code corresponding to the flow chart program above

4. 2017 J uly/Aug Exams, Q6(b)

The diagram below is given in the form of a flow chart

Write a pseudo code corresponding to the flow chart program above

5. 2016 Oct/Nov Exams, Q3(b)

The program below is given in the form of a pseudo code.
Start
Enter radius
If radius < 0
The display "error message" and re-enter positive radius
Else enter height
If height < 0
The display "error message" and re-enter positive height
Else Volume $=\frac{1}{3} * \pi *$ square radius $*$ height
End if
Display volume
Stop
Draw the corresponding flowchart for the information given above.

TOPIC 7: LOCI \& CONSTRUCTION

Answer the whole of these questions on a sheet of plain papers

1. 2018 Oct/Nov Exams, Q4

(a) (i) Construct triangle $X Y Z$ in which $X Y=9 \mathrm{~cm}, Y Z=7 \mathrm{~cm}$ and angle $X Y Z=38^{\circ}$
(ii) Measure and write the length of $X Z$
(b) On your diagram within triangle XYZ, construct the locus of points which are
(i) 6 cm from Y
(ii) equidistant from $\mathbf{X Y}$ and $\mathbf{X Z}$
(c) Mark clearly with letter \mathbf{P}, within triangle $\mathbf{X Y Z}$, a point which is 6 cm from \mathbf{Y} and equidistance from XY and XZ .
(d) $\quad \mathrm{A}$ point Q within triangle $\mathbf{X Y Z}$ is such that its distance from Y is less than or equal to 6 cm and its nearer to $\mathbf{X Y}$ than $\mathbf{X Z}$. Indicate clearly by shading the region in which \mathbf{Q} must lie.

2. 2018 J ul/Aug Exams, Q4

(a) (i) Construct triangle $\mathbf{P Q R}$ in which $\mathbf{P Q}=10 \mathrm{~cm}, \mathbf{Q R}=8 \mathrm{~cm}$ and $\mathbf{P Q R}=50^{\circ}$
(ii) Measure and write the length of PR
(b) On your diagram, within triangle PQR, construct the locus of points which are
(i) equidistant from \mathbf{P} and \mathbf{Q}
(ii) equidistant from PR and PQ
(iii) 5 cm from \mathbf{R}
(c) $\quad \mathrm{A}$ point \mathbf{T} within triangle $\mathbf{P Q R}$ is such that it is 5 cm from \mathbf{R} and equidistant from \mathbf{P} and \mathbf{Q}. Label point \mathbf{T}.
(d) Another point \mathbf{X} is such that it is less than or equal to 5 cm from \mathbf{R}, nearer to \mathbf{Q} than \mathbf{P} and nearer to $\mathbf{P Q}$ than $\mathbf{P R}$. Indicate by shading, the region in which \mathbf{X} must lie.

3. 2017 Oct/Nov Exams, Q3

(a) Construct a quadrilateral $A B C D$ in which $A B=10 \mathrm{~cm}$, and angle $A B C=120^{\circ}$, angle $B A D=60^{\circ}, B C=7 \mathrm{~cm}$ and $A D=11 \mathrm{~cm}$
(b) Measure and write the length of $C D$
(c) Within the quadrilateral $A B C D$, draw the locus of points which are
(i) 8 cm from A
(ii) Equidistant from BC and CD
(d) A point P, within the quadrilateral $A B C D$, is such that it 8 cm from A and equidistant from $B C$ and $C D$. Label point P.
(e) Another point Q, within the quadrilateral $A B C D$, is such that, it is nearer to $C D$ than BC and greater than or equal to 8 cm from A . indicate, by shading, the region in which Q must lie.

4. 2017 J uly/Aug Exams, Q4

(a) (i) Construct triangle $P Q R$ in which $P Q$ is 9 cm , angle $P Q R=60^{\circ}$ and $Q R=10 \mathrm{~cm}$
(ii) Measure and write the length of PR.
(b) On your diagram, draw the locus of points with triangle PQR which are
(i) 3 cm from PQ ,
(ii) 7 cm from R ,
(iii) Equidistant from P and R .
(c) A point M, within triangle $P Q R$, is such that it is nearer to R than P, less than or equal to 7 cm from R and less than or equal to 3 cm from PQ. Shade the region in which M must lie

5. 2016 Oct/Nov Exams, Q4

(a) (i) Construct triangle ABC where $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=7 \mathrm{~cm}$
(ii) Measure and write the size of $\angle \mathrm{CAB}$.
(b) Within triangle $A B C$ construct the locus of points which are
(i) Equidistant from $A B$ and $B C$
(ii) 4 cm from B
(iii) 3 cm from AB
(c) A point R, within triangle $A B C$, is such that it is nearer to $B C$ than $A B$, less that 3 cm from $A B$ and less than 4 cm from B. Shade the region in which R must lie.

TOPIC 8: CALCULUS

1. 2018 Oct/Nov Exams, Q3

(a) Evaluate $\int_{-1}^{2}\left(2+x-x^{2}\right) d x$
(b) Find the equation of the normal to the curve $y=x+\frac{4}{x}$ at the point where $x=4$
2. $2018 \mathrm{~J} \mathbf{u l} /$ Aug Exams, Q7(b)
(a) Evaluate $\int_{0}^{1}\left(x^{2}-2 x+3\right) d x$
(b) Determine the equation of the normal to the curve $y=2 x^{2}-3 x-2$ that passes through $(3,7)$
3. 2017 Oct/Nov Exams, Q9 (b \& c)
(a) Find the coordinates of the points on the curve $y=2 x^{3}-3 x^{2}-36 x-3$ where the gradient is zero.
(b) Evaluate $\int_{-1}^{3}\left(3 x^{2}-2 x\right) d x$

4. 2017 J uly/Aug Exams, Q4b \& 9c

(a) Evaluate $\int_{2}^{5}\left(3 x^{2}+2\right) d x$
(b) Find the equation of the tangent to the curve $y=x^{2}-3 x-4$ at a point where $x=2$
5. 2016 Oct / Nov Exams, Q6

The equation of the curve is $y=x^{3}-\frac{3}{2} x^{2}$. Find
(a) equation of the normal where $x=2$,
(b) the coordinates of the stationary points.

TOPIC 9: VECTORS

1. 2018 Oct/Nov Exams, Q3

In the quadrilateral $\mathrm{ABCD}, \overrightarrow{\mathrm{AB}}=\underline{a}$ and $\overrightarrow{\mathrm{AD}}=\underline{b}, \overrightarrow{\mathrm{BC}}=2 \underline{b}$ and $\mathrm{AE}: \mathrm{AC}=1: 3$

(i) Find in terms of \underline{a} and/or \underline{b}
(a) $\overrightarrow{A E}$
(b) $\overrightarrow{B E}$
(c) $\overrightarrow{B D}$
(ii) Hence or otherwise show that the points B, D and E are collinear

2. 2017 Oct/Nov Exams, Q2(b)

In the diagram below, $\overrightarrow{O P}=2 p, \overrightarrow{O Q}=4 q$ and $P X: X Q=1: 2$

(i) Express in terms of p and / or q.
(a) $\overrightarrow{P Q}$
(b) $\overrightarrow{P X}$
(c) $\overrightarrow{O X}$
(ii) Given that $\overrightarrow{\mathrm{OC}}=h \overrightarrow{\mathrm{OX}}$, show that $\overrightarrow{\mathrm{CQ}}=4\left(1-\frac{h}{3}\right) \mathrm{q}-\frac{4 h}{3} \mathrm{p}$.

3. 2017 J uly/Aug Exams, Q6(a)

In the diagram below, OABC is a parallelogram in which $\overrightarrow{\mathrm{OA}}=\underline{a}$ and $\overrightarrow{\mathrm{AB}}=2 b$. OB and $A C$ intersect at $D . E$ is the midpoint of $C D . E$ is the mid - point of $C D$.

Express in terms of \underline{a} and / or \underline{b}.
(a) $\overrightarrow{O B}$,
(b) $\overrightarrow{\mathrm{OE}}$,
(c) $\overrightarrow{\mathrm{CD}}$.

4. 2017 Oct/Nov Exams, Q6(a)

In the diagram below, OAB is a triangle in which $\overrightarrow{O A}=3 \underline{a}$ and $\overrightarrow{O B}=6 \underline{b}$.
$O C: C A=2: 3$ and $A D: D B=1: 2$. OD meets $C B$ at E.

(i) Express each of the following in terms of \underline{a} and / or \underline{b}
(a) $\overrightarrow{\mathrm{AB}}$
(b) $\overrightarrow{\mathrm{OD}}$
(c) $\overrightarrow{\mathrm{BC}}$
(ii) Given that $\overrightarrow{\mathrm{BE}}=\mathrm{h} \overrightarrow{\mathrm{BC}}$, express $\overrightarrow{\mathrm{BE}}$ in terms of h, \underline{a} and \underline{b}

TOPIC10: TRIGONOMETRY

1. 2018 Oct/Nov Exams, Q8

In the diagram below, K, N, B and R are places on horizontal surface. $K N=80 \mathrm{~m}$, $\mathrm{NB}=50 \mathrm{~m}$ and $\mathrm{K} \widehat{\mathrm{R}} \mathrm{N}=52^{\circ}$
(a) Calculate

(i) KR
(ii) the area of triangle KNB
(b) Given that the area of triangle KNR is equal to $3260 \mathrm{~m}^{2}$, calculate the shortest distance from R to KN.
(c) Sketch the graph of $y=\cos \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$

2. 2018 J uly/Aug Exams, Q8

(a) Three villages A, B and C are connected by straight paths as shown in the diagram below.

Given that $A B=15 \mathrm{~km}$, angle $A B C=79^{\circ}$ and angle $A C B=40^{\circ}$, calculate the
(i) Distance AC
(ii) area of triangle $A B C$ (iii) shortest distance from B to $A C$
(b) Solve the equation $\cos \theta=0.937$ for for $0^{\circ} \leq \theta \leq 360^{\circ}$
(c) Sketch the graph of $y=\sin \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$

3. 2017 Oct/Nov Exams, Q7

(a) The diagram below shows the Location of houses for a village Headman (H), his Secretary (S) and a Trustee (T). H is 1.3 km from S, T is 1.9 km from H and

$$
\mathrm{T} \widehat{\mathrm{H} S}=130^{\circ}
$$

Calculate
(i) the area of triangle THS
(ii) the distance TS
(iii) the shortest distance from H to TS
(b) Find the angle between 0° and 90° which satisfies the equation $\cos \theta=\frac{2}{3}$

4. 2017 J uly/ Aug Exams, Q10

(a) In Triangle PQR below, QR = 36.5, angle PQR $=36^{\circ}$ and angle $Q P R=46^{\circ}$.

Calculate

(i) PQ
(ii) the area of triangle PQR
(iii) the shortest distance from R to PQ
(b) Solve the equation $\sin \theta=0.6792$ for $0^{\circ} \leq \theta \leq 360^{\circ}$

5. 2016 Oct/Nov Exams, Q10

(a) The diagram below shows the location of three secondary schools, namely Mufulira (M), Kantanshi (K) and Ipusukilo (I) in Mufulira district. M is 5 km from K , I is 3 km from K and angle MKI is 110°

Calculate
(i) Ml
(ii) the area of triangle MKI
(iii) the shortest distance from K to MI
(b) Solve the equation $\tan \theta=0.7$ for $0^{\circ} \leq \theta \leq 180^{\circ}$.

[^0]
TOPIC 11: MENSURATION

1. 2018 Oct/ Nov Exams, Q12(a)

The diagram below is a frustum of a rectangular pyramid with a base 14 cm long and 10 cm wide. The top of a frustum is 8 cm long and 4 cm wide.

Given that the height of the frustum is 11.4 cm , calculate its volume.

2. 2018 J uly/August Exams, Q6

The diagram below shows a bin in the form of a frustum with square base ends of t sides 4 cm and 10 cm respectively. The height of the bin is 9 cm .

Find the volume of the bin.

3. 2017 Oct/ Nov Exams, Q4(b)

The figure below is a frustum of a cone. The base diameter and top diameter are 42 cm and 14 cm respectively, while the height is 20 cm . (Take $\boldsymbol{\pi}=\mathbf{3 . 1 4 2}$)

Calculate its volume

4. 2017 J uly/Aug Exams, Q12 (a)

The figure below is a cone $A B C$ form which $B C X Y$ remained after the small cone $A X Y$ was cut of [Take $\pi=3.142$]

Given that $\mathrm{EX}=4 \mathrm{~cm}, \mathrm{DB}=12 \mathrm{~cm}$ and $\mathrm{DE}=15 \mathrm{~cm}$, calculate
(i) the height $A E$, of the smaller con AXY.
(ii) the volume of XBCY , the shape that remained.

5. 2016 Oct/ Nov Exams; Q 9(b and c)

(a) The cross section of a rectangular tank measures 1.2 m by 0.9 . if it contains fuel to a depth of 10 m , find the number of litres of fuel in the tank. ($1 \mathrm{~m}^{3}=1000$ litres)
(b) A cone has a perpendicular height of 12 cm and slant height of 13 cm , calculate its total surface area. (Take $\pi=3.142$).

TOPIC 12: EARTH GEOMETRY

1. 2018 Oct/Nov Exams, Q12(b)

The points $\mathrm{A}\left(15^{\circ} \mathrm{N}, 40^{\circ} \mathrm{E}\right), \mathrm{B}\left(35^{\circ} \mathrm{N}, 70^{\circ} \mathrm{E}\right)$ and $\mathrm{C}\left(35^{\circ} \mathrm{S}, 40^{\circ} \mathrm{E}\right)$ are on the surface of the Earth. [Use $\pi=3.142$ and $R=6370 \mathrm{~km}$]
(a) Calculate the distance AC in kilometers.
(b) An aero plane takes off from point B and flies due west on the same latitude covering a distance of 900 km to point Q .
(i) Calculate the difference in longitudes between B and Q .
(ii) Find the position of Q .
2. 2018 July/ Aug Exams, Q7(a)

In the diagram below, A and B are points on latitude $60^{\circ} \mathrm{N}$ while C is a point on latitude $60^{\circ} \mathrm{S}$. $[\pi=3.142$ and $\mathrm{R}=3437 \mathrm{~nm}$].

(a) Calculate the distance BC along the latitude $60^{\circ} \mathrm{E}$ in nautical miles.
(b) A ship sails from C to D in 12 hours. Find its speed in notes.

3. 2017 Oct/ Nov Exams, Q9(a)

$\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z are four points on the surface of the earth as shown in the diagram below.
(Take $\pi=3.142$ and $R=3437$)

(a) Calculate the difference in latitudes between W and Y .
(b) Calculate the distance in nautical miles between
(i) $\quad \mathrm{X}$ and Z along the longitudes $105^{\circ} \mathrm{E}$
(ii) $\quad \mathrm{Y}$ and Z along the circle of latitude $30^{\circ} \mathrm{S}$

4. 2017 J uly/Aug Exams, Q12 (a)

$\mathbf{P}\left(80^{\circ} \mathrm{N}, 10^{\circ} \mathrm{E}\right), \mathbf{Q}\left(80^{\circ} \mathrm{N}, 70^{\circ} \mathrm{E}\right), \mathbf{R}\left(85^{\circ} \mathrm{S}, 70^{\circ} \mathrm{E}\right)$ and $\mathbf{S}\left(85^{\circ} \mathrm{S}, 10^{\circ} \mathrm{E}\right)$ are the points on the surface of the earth.
(i) Show the points on a clearly labeled sketch of the surface of the earth
(ii) Find in nautical miles
(a) The distance QR along the longitude,
(b) The circumference of latitude $85^{\circ} \mathrm{S}$.
[Take $\pi=3.142$ and $R=3437 \mathrm{~nm}$]

5. 2016 Oct/ Nov Exams, Q9(a)

The points A, B, C and D are on the surface of the earth.
(Take $\pi=3.142$ and $R=3437 \mathrm{~nm}$)

(a) Find the difference in latitude between points C and B .
(b) Calculate the length of the circle of latitude $50^{\circ} \mathrm{N}$ in nautical miles.
(c) Find the distance AD in nautical miles.

TOPIC 13: QUADRATIC FUNCTIONS

1. 2018 Oct/Nov Exams, Q7(a)

The values x and y are connected by the equation $y=2 x^{3}-3 x^{2}+5$. Some corresponding values of x and y are given in the table below.

x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
y	p	-8.5	0	4	5	4.5	4	5	9

(a) Calculate the value of P
(b) Using a scale of 4 cm to represent 1 unit on the x-axis for $-2 \leq x \leq 2$ and a scale of 2 cm to represent 5 units on the y-axis for $-25 \leq y \leq 10$, draw the graph of $y=2 x^{3}-3 x^{2}+5$.
(c) Use your graph to solve the equation $2 x^{3}-3 x^{2}+5=x$
(d) Calculate an estimate of the gradient of the curve at the point where $x=1.5$

2. 2018 July/ Aug Exams, Q12a)

The diagram below shows the graph of $y=x^{3}+x^{2}-12 x$

(a) Use the graph to solve the equation
(i) $x^{3}+x^{2}-12 x=0$
(ii) $\quad x^{3}+x^{2}-12 x=x+10$
(b) Calculate an estimate of the
(i) Gradient of the curve at the point where $x=-3$
(ii) Area bounded by the curve, $x=-3, x=-1$ and $y=-10$
3. 2017 Oct / Nov Exams, Q10(a)

The diagram below shows the graph of $y=x^{3}+3 x^{2}-x-3$

(a) Use the graph to find the solutions of the equations
(i) $\quad x^{3}+3 x^{2}-x-3=0$
(ii) $\quad x^{3}+3 x^{2}-x-3=5$
(b) Calculate an estimate of
(i) the gradient of the curve at the point $(-3,0)$
(ii) the area bounded by the curve, $x=0, y=0$ and $y=20$

I was not born a mathematician, but I am determined to Be a mathematician (Young Drof)

4. 2017 J uly/Aug Exams, Q9(a)

The diagram below shows the graph of $y=x^{3}+x^{2}-5 x+3$

Use the graph
(a) to calculate an estimate of the gradient of the curve at the point $(2,5)$.
(b) to solve the equations
(i) $x^{3}+x^{2}-5 x+3=0$
(ii) $\quad x^{3}+x^{2}-5 x+3=5 x$
(c) to calculate an estimate of the area bounded by the curve $x=0, y=0$ and $x=-2$

5. 2016 Oct/ Nov Exams, Q9(a)

The values of x and y are connected by the equation $y=x(x-2)(x+2)$. Some corresponding values of x and y are given in the table below

x	-3	-2	-1	0	1	2	3
y	-15	0	3	0	-3	0	k

(a) Calculate value of k
(b) Using a scale of 2 cm to represent 1 unit on the x - axis for $-3 \leq x \leq 3$ and 2 cm to represent 5 units on the y - axis for $-16 \leq y \leq 16$. Draw the graph of $y=x(x-2)(x+2)$
(c) Use your graph to solve the equations
(i) $\quad x(x-2)(x+2)=0$
(ii) $\quad x(x-2)(x+2)=x+2$

TOPIC 14: LINEAR PROGRAMING

All the questions in this topic are to be answered on the sheet of graph papers.

1. 2018 Oct/Nov Exams, Q7(a)

A hired bus is used to take learners and teachers on a trip. The number of learners and teachers must be more than 60 . There must be at least 35 people on the trip. There must be at least 6 teachers on the trip. The number of teachers on the trip should not be more than 14.

Let x be the number of learners and y be the number of teachers.
(a) Write four inequalities which present the information above.
(b) Using a scale of 2 cm to represent 10 units on both axes, draw the x and y axes for $0 \leq x \leq 70$ and $0 \leq y \leq 70$ respectively and shade the unwanted region to indicate clearly where the solution of the inequalities lie.
(c) (i) If the group has 25 learners, what is the minimum number of teachers that must accompany them?
(ii) If 8 teachers go on the trip, what is the maximum number of learners that can be accommodated on the bus?
(d) If T is the amount in Kwacha paid by the whole group, what is the cost per learner if $\mathrm{T}=30 x+50 y$

2. 2018 July/ Aug Exams, Q12a)

A tailor at a certain market intends to make dresses and suits for sale.
(a) Let x represent the number of dresses and y the number of suits. Write the inequalities which represent each of the conditions below.
(i) The number of dresses should not exceed 50
(ii) The number of dresses should not be more than the number of suits.
(iii) The cost of making a dress is K 140.00 and that o a suit is K210.00. The total should be at least K10 500.00
(b) Using a scale of 2 cm to represent 10 units on both axes, draw x and y axes for $0 \leq x \leq 60$ and $0 \leq y \leq 80$. Shade the unwanted region to indicate clearly the region where (x, y) must lie.
(c) (i) The profit on a dress is K160.00 and on a suit is K270.00. Find the number of dresses and suits the tailor must make for maximum profit.
(ii) Calculate this maximum profit.

3. 2017 Oct / Nov Exams, Q10(a)

Himakwebo orders maize and groundnuts for sale. The order price for a bag of maize is K75.00 and that of a bag of groundnuts is K150.00. He is ready to spend up to K7 500.00 altogether. He intends to order at least 5 bags of maize and at least 10 bags of groundnuts. He does not want to order more than 70 bags altogether.
(a) If x and y are the number of bags of maize and groundnuts respectively, Write four inequalities which represent these conditions.
(b) Using a scale of 2 cm to represent 10 bags on each axis, draw the x and y axes for $0 \leq x \leq 70$ and $0 \leq y \leq 70$ respectively and shade the unwanted region to show clearly the region where the solution of the inequalities lie.
(c) Given that a profit on the bag of maize is K25.00 and on the bag of groundnuts is K50.00, how many bags of each type should he order to have the maximum profit?
(d) What is this estimate of the maximum profit?

4. 2017 J uly/Aug Exams, Q9(a)

Makwebo prepares two types of sausages, hungarian and beef, daily for sale. She prepares at least 40 hungarian and at least 10 beef sausages. She prepares not more than 160 sausages altogether. The number o beef sausages prepared are not more than the number of Hungarian sausages.
(a) Given that x represents the number of Hungarian sausages and y the number of beef sausages, write four inequalities which represent these conditions.
(b) Using a scale of 2 cm to present 20 cm sausages on both axes, draw the x and y axes for $0 \leq x \leq 160$ and $0 \leq y \leq 160$ respectively and shade the unwanted region to show clearly the region where the solution of the inequalities lie.
(c) The profit on the sale of each Hungarian sausage is K3.00 and on each beef sausage is K2.00. How many of each type of sausages are required to make maximum profit?
(d) Calculate this maximum profit
5. 2016 Oct/ Nov Exams, 11(a)

A Health Lobby group produced a guide to encourage healthy living among local community. The group produced the guide in two formats: a short video and a printed book. The group needs to decide the number of each format to produce for sale to maximize profit.

Let x represent the number of videos produced and y the number of printed books produced.
(a) Write the inequalities which represent each of the following conditions
(i) the total number of copies produced should not be more than 800 ,
(ii) the number of video copies to be at least 100
(iii) the number of printed books to be at least 100.
(b) Using a scale of 2 cm to represent 100 copies on both axes, draw the x and y axes for $0 \leq x \leq 800$ and $0 \leq y \leq 800$ respectively and shade the unwanted region to indicate clearly the region where the solution of the inequalities lie.
(c) The profit on the sale of each video copy is K15.00 while the profit on each printed book is K8.00. How many of each type were produced to make maximum profit

TOPIC 15: STATISTICS

1. 2018 Oct/Nov Exams, Q9

The frequency table below shows the distribution of marks obtained by 90 learners on a test.

Marks(x)	$10<x \leq 20$	$20<x \leq 30$	$30<x \leq 40$	$40<x \leq 50$	$50<x \leq 60$	$60<x \leq 70$
frequency	2	10	15	23	30	10

(a) Calculate the standard deviation
(b) Answer this part of this question on the sheet of graph paper
(i) copy and complete the cumulative frequency table

Marks(x)	≤ 10	≤ 20	≤ 30	≤ 40	≤ 50	≤ 60	≤ 70
Cumulative frequency	0	2	12	27	50	80	90
Relative Cumulative frequency	0	0.02	0.13	0.3			

(ii) Using a scale of 2 cm to represent 10 units on the x - axis for $0 \leq x \leq 70$ and a scale of 2 cm to represent 0.1 units on the y - axis for $0 \leq y \leq 1$, draw a smooth relative cumulative frequency curve.
(iii) Showing your method clearly, use your graph to estimate the $65^{\text {th }}$ Percentile.

2. 2018 July/ Aug Exams, Q11

A farmer planted 60 fruit trees. In a certain month, the number of fruits per tree was recorded and the results were as shown in the table below.

Fruits per tree	2	3	4	5	6	7	8
frequency	1	5	4	6	10	16	18

(a) Calculate the standard deviation
(b) Answer this part of the question on the sheet of graph paper
(i) Using the table above, copy and complete the relative cumulative frequency table below

Fruits per tree	2	3	4	5	6	7	8
Cumulative frequency	1	6	10	16	26	42	60
Relative cumulative frequency	0.02	0.1	0.17	0.27			

(ii) Using a scale of 1 cm to represent 1 unit on the x-axis for $0 \leq x \leq 8$ and a scale of 2 cm to represent 0.1 unit on the y - axis for $0 \leq y \leq 1$, draw a smooth relative frequency curve.
(iii) Showing your method clearly, use your graph to estimate the $70^{\text {th }}$ Percentile.

3. 2017 Oct / Nov Exams, Q8

The table below shows the amount of money spent by 100 learners at school on a particular day.

Amount in Kwacha	$0<x \leq 5$	$5<x \leq 10$	$0<x \leq 15$	$15<x \leq 20$	$20<x \leq 25$	$25 \leq x \leq 30$
Frequency	13	27	35	16	7	2

(a) Calculate the standard deviation.
(b) Answer this part of the question on a sheet of graph paper
(i) Using the table above, copy and complete the cumulative frequency table below.

Amount in Kwacha	≤ 0	≤ 5	≤ 10	≤ 15	≤ 20	≤ 25	≤ 30
Cumulative frequency	0	13	40				100

(ii) Using a scale of 2 cm to represent 5 units on the horizontal axis and 2 cm to represent 10 units on the vertical axis, draw a smooth cumulative frequency curve.
(iii) Showing your method clearly, use your graph to estimate the semi- interquartile range.

4. 2017 July/ Aug Exams, Q8

The frequency table below shows the number of copies of newspapers allocated to 48 newspaper vendors.

Copies of Newspaper	$25<x \leq 30$	$30<x \leq 35$	$35<x \leq 40$	$40<x \leq 45$	$45<x \leq 50$	$50<x \leq 55$	$55<x \leq 60$
Number of vendors	6	4	7	11	12	8	1

(a) Calculate the standard deviation.
(b) Answer this part of the question on a sheet of graph paper
(i) Using the table above, copy and complete the cumulative frequency table below.

Copies of newspaper	≤ 25	≤ 30	≤ 35	≤ 40	≤ 45	≤ 50	≤ 55	≤ 60
Number of Vendors	0	5	9	16	27			

(ii) Using a horizontal scale of 2 cm to represent 10 newspapers on the x -axis for $0 \leq x \leq 60$ and a vertical scale of 4 cm to represent 10 vendors on the $\mathrm{y}-$ axis for $0 \leq y \leq 50$, draw a smooth cumulative frequency curve.
(iii) Showing your method clearly, use your graph to estimate the $50^{\text {th }}$ Percentile.
5. 2016 Oct/ Nov Exams, 7

The ages of people living at Pamodzi Village are recorded in the frequency table below.

Ages	$0<x \leq 10$	$10<x \leq 20$	$20<x \leq 30$	$30<x \leq 40$	$40<x \leq 50$	$50<x \leq 60$
Number of People	7	22	28	23	15	5

(a) Calculate the standard deviation
(b) Answer part of this question on a sheet of a graph paper
(i) Using the table above, copy and complete the cumulative frequency table below.

Age	≤ 10	≤ 20	≤ 30	≤ 40	≤ 50	≤ 60
Number of people	7	29				100

(ii) Using the scale of 2 cm to represent 10 units on both axes, draw a smooth cumulative frequency curve where $0 \leq x \leq 60$ and $0 \leq y \leq 100$.
(iii) Showing your method clearly, use your graph to estimate the Semi- interquartile range.

TOPIC 16: TRANSFORMATION

1. 2018 Oct/Nov Exams, Q10

Study the diagram below and answer the questions that follow.

(a) Triangle R is the image of triangle P under a rotation. Find the coordinates of the centre, angle and the direction of the rotation.
(b) $\quad A$ single transformation maps triangle P onto triangle M. describe fully this transformation.
(c) Triangle P maps onto triangle V by a stretch. Find the matrix of this transformation
(d) If triangle P is mapped onto triangle S by a shear represented by the matrix $\left(\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right)$, find the coordinates of S.

2. 2018 J uly/Aug Exams, Q10

Using a scale of 1 cm to represent 1 unit, on both axes, draw x and y axes for
$-8 \leq x \leq 12$ and $-6 \leq y \leq 14$.
(a) Draw and label triangle X with vertices $(2,4),(4,4)$ and $(4,1)$.
(b) Triangle X is mapped onto triangle U with vertices $(6,12),(12,12)$ and $(12,3)$ by a single transformation.
(i) Draw and label triangle U.
(ii) Describe fully this transformation.
(c) $\mathrm{A} 90^{\circ}$ clockwise rotation about the origin maps triangle X onto triangle W . Draw and label triangle W .
(d) $\quad \mathrm{A}$ shear with X -axis as the invariant line and shear factor -2 maps triangle X onto triangle S. Draw and label triangle S.
(e) Triangle X is mapped onto triangle M with vertices $(4,4),(8,4)$ and $(8,1)$.
(i) Draw and label triangle M
(ii) Find the matrix which represents this transformation

3. 2017 Oct/Nov Exams, Q12

Using a scale of 1 cm to represent 1 unit on each axis, draw x and y axes for
$-6 \leq x \leq 10$ and $-10 \leq y \leq 8$.
(a) A quadrilateral ABCD has vertices $\mathrm{A}(-5,7), \mathrm{B}(-4,8), \mathrm{C}(-3,7)$ and $\mathrm{D}(-4,4)$ while its imagine has vertices $\mathrm{A}_{1}(-5,-3), \mathrm{B}_{1}(-6,-2), \mathrm{C}_{1}(-5,-1)$ and $\mathrm{D}_{1}(-2,-2)$.
(i) Draw and label the quadrilateral $A B C D$ and its image $A_{1} B_{1} C_{1} D_{1}$.
(ii) Describe fully the transformation which maps the quadrilateral ABCD onto quadrilateral $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1}$.
(b) The matrix $\left(\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right)$ maps the quadrilateral $A B C D$ on the quadrilateral $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$
(i) Find the coordinates of the vertices of the quadrilateral $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$
(ii) Draw and label the quadrilateral $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$.
(c) The quadrilateral $A B C D$ is mapped onto quadrilateral $A_{3} B_{3} C_{3} D_{3}$ where A_{3} is $(4,-8), B_{3}$ is $(2,-10)$, is $C_{3}(0,-8)$ and D_{3} is $(2 .-2)$. Describe fully this transformation.

4. 2017 July/Aug Exams, Q7

Using a scale of 1 cm to represent 1 unit on each axis, draw x and y axes for

$$
-6 \leq x \leq 10 \text { and }-6 \leq y \leq 12
$$

(a) A quadrilateral $A B C D$ has vertices $A(1,1), B(2,1), C(3,2)$ and $D(2,3)$ while its imagine has vertices $A_{1}(3,2), B_{1}(6,1), C_{1}(9,2)$ and $D_{1}(6,3)$.
(i) Draw and label the quadrilateral $A B C D$ and its image $A_{1} B_{1} C_{1} D_{1}$.
(ii) Describe fully the transformation which maps the quadrilateral $A B C D$ onto quadrilateral $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{1}$.
(b) The matrix $\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$ maps the quadrilateral $A B C D$ on the quadrilateral $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$.
(i) Find the coordinates of quadrilateral $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$.
(ii) Draw and label quadrilateral $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$.
(c) Quadrilateral $\mathrm{A}_{3} \mathrm{~B}_{3} \mathrm{C}_{3} \mathrm{D}_{3}$ has vertices $\mathrm{A}_{3}(-2,-4), \mathrm{B}_{3}(-4,-2), \mathrm{C}_{3}(-6,-4)$ and $D_{3}(-4,-6)$. Describe fully the transformation which maps quadrilateral $A B C D$ onto $A_{3} B_{3} C_{3} D_{3}$.

5. 2017 Oct/Nov Exams, Q12

Study the diagram below and answer questions that follow.

(a) An enlargement maps triangle $A B C$ onto triangle $A_{1} B_{1} C_{1}$. Find
(i) the centre of enlargement
(ii) the scale factor
(b) Triangle ABC is mapped onto triangle $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$ by a shear. Find the matrix which presents this transformation.
(c) Triangle $A B C$ is mapped onto triangle $A_{3} B_{3} C_{3}$ by a single transformation. Describe this transformation fully.
(d) A transformation with matrix $\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$ maps triangle ABC onto triangle $\mathrm{A}_{4} \mathrm{~B}_{4} \mathrm{C}_{4}$ not drawn on the diagram. Find
(i) The scale factor of this transformation
(ii) The coordinates of $\mathrm{A}_{4}, \mathrm{~B}_{4}$ and C_{4}.

$\mathfrak{A n s w e r s}$ to $\mathfrak{A l l}$ the \mathbb{T} opic \mathbb{Q} uestions

TOPIC1: ALGEBRA

1. (a) $\frac{b-a}{a^{2}-b^{2}}$
(b) $\frac{12 d n^{3}}{15 c d^{3}} \div \frac{9 c^{3} n}{10 c^{2} d^{2}}$
(c) $\frac{3}{x+1}-\frac{4}{x-1}$
$=\frac{12 d n^{3}}{15 c d^{3}} \times \frac{10 c^{2} d^{2}}{9 c^{3} n}$
$=\frac{3(x-1)-4(x+1)}{(x+1)(x-1)}$
$=\frac{12 \times d \times n \times n \times n}{15 \times c \times d \times d \times d} \times \frac{10 \times c \times c \times d \times d}{9 \times c \times c \times c \times n}=\frac{3 x-3-4 x-4}{(x+1)(x-1)}$
$=\frac{8 n^{2}}{9 c^{2}}$ Ans
$=\frac{3 x-4 x-3-4}{(x+1)(x-1)}$
$=\frac{-x-7}{(x+1)(x-1)}$ Ans
$=\frac{-1(a-b)}{(a+b)}$
$=\frac{-1}{a+b}$ Ans
2. (a) $\frac{7 s t^{3}}{15 u^{3} v^{2}} \times \frac{5 u^{3} v}{28 s^{3} t^{2}}$
$=\frac{7 \times s \times t \times t \times t}{15 \times u \times u \times u} \times \frac{5 \times u \times u \times u \times u \times v}{28 \times s \times s \times s \times t \times t}$
$=\frac{t}{12 v s^{2}}$ Ans
(b) $\frac{3}{2 x-5}-\frac{4}{x-3}$
$=\frac{3(x-3)-4(2 x-5)}{(2 x-5)(x-3)}$
$=\frac{3 x-9-8 x+20}{(2 x-5)(x-3)}$
$=\frac{3 x-8 x-9+20}{(2 x-5)(x-3)}=\frac{-\mathbf{5 x} \boldsymbol{x 1 1}}{(\mathbf{2 x - 5})(x-\mathbf{3})}$ Ans
3. (a) $\frac{14 x^{3}}{9 y^{2}} \div \frac{7 x^{4}}{18 y^{3}}$
(b) $\frac{2 x^{2}-8}{x+2}$
(c) $\frac{1}{x-4}-\frac{2}{5 x-1}$
$=\frac{14 x^{3}}{9 y^{2}} \times \frac{18 y^{3}}{7 x^{4}}$
$=\frac{2\left(x^{2}-4\right)}{x+2}$
$=\frac{1(5 x-1)-2(x-4)}{(x-4)(5 x-1)}$
$=\frac{14 \times x \times x \times x}{9 \times y \times y} \times \frac{18 \times y \times y \times y}{7 \times x \times x \times x \times x}$
$=\frac{2\left(x^{2}-2^{2}\right)}{x+2}$
$=\frac{5 x-1-2 x+8}{(x-4)(5 x-1)}$
$=\frac{4 y}{x}$ Ans

$$
\begin{aligned}
& =\frac{2(x+2)(x-2)}{x+2} \\
& =2(x-2) \text { Ans }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{5 x-2 x-1+8}{(x-4)(5 x-1)} \\
& =\frac{3 x+7}{(x-4)(5 x-1)} \text { Ans }
\end{aligned}
$$

4. (a) $\frac{m^{2}-1}{m^{2}-m}$
(b) $\frac{p^{2} q^{3}}{4} \times \frac{8}{p q} \div 2 p^{2} q$
(c) $\frac{3}{5 x-2}-\frac{2}{x+3}$
$=\frac{m^{2}-1^{2}}{m(m-1)}$
$=\frac{p^{2} q^{3}}{4} \times \frac{8}{p q} \times \frac{1}{2 p^{2} q}$
$=\frac{3(x+3)-2(5 x-2)}{(5 x-2)(x+3)}$
$=\frac{(m+1)(m-1)}{m(m-1)}$
$=\frac{p \times p \times q \times q \times q}{4} \times \frac{8}{p \times q} \times \frac{1}{2 \times p \times p \times q}$
$=\frac{3 x+9-10 x+4}{(5 x-2)(x+3)}$
$=\frac{m+1}{m}$ Ans
$=\frac{q}{p}$ Ans
$=\frac{3 x-10 x+9+4}{(5 x-2)(x+3)}$
$=\frac{-7 x+13}{(5 x-2)(x+3)}$ Ans
5. (a) $\frac{x-1}{x^{2}-1}$
$=\frac{x-1}{x^{2}-1^{2}}$
$=\frac{x-1}{(x+1)(x-1)}$
$=\frac{1}{x+1}$ Ans
(b) $\frac{17 k^{2}}{20 a^{2}} \div \frac{51 k^{2}}{5 a}$
(c) $\frac{2}{2 x-1}-\frac{1}{3 x+1}$
$=\frac{17 k^{2}}{20 a^{2}} \times \frac{5 a}{51 k^{2}}$
$=\frac{2(3 x+1)-1(2 x-1)}{(2 x-1)(3 x+1)}$
$=\frac{17 \times k \times k}{20 \times a \times a} \times \frac{5 \times a}{51 \times k \times k}$
$=\frac{6 x+2-2 x+1}{(2 x-1)(3 x+1)}$
$=\frac{1}{12 a}$ Ans
$=\frac{6 x-2 x+2+1}{(2 x-1)(3 x+1)}$
$=\frac{4 x+3}{(2 x-1)(3 x+1)}$ Ans

TOPIC 2: MATRICES

1. (a) deter $A=(4 \times 2)-(1 \times-5)$
(b) $\quad B=\left(\begin{array}{ll}8 & y \\ 3 & 5\end{array}\right)$,
$B=\left(\begin{array}{ll}8 & 9 \\ 3 & 5\end{array}\right)$
$B^{-1}=\frac{1}{13}\left(\begin{array}{cc}5 & -9 \\ -3 & 8\end{array}\right)$ Ans

$$
\begin{aligned}
& \therefore \text { Det } \boldsymbol{A}=13 \text { Ans } \\
& \text { deter } B=(8 \times 5)-(3 \times y) \\
& 13=40-3 y \\
& 13-40=-3 y \\
& -27=-3 y \text { dividing both sides by } 3 \text { we have, } \\
& y=\mathbf{9} \text { Ans }
\end{aligned}
$$

2. (a) Deter $\mathrm{A}=(2 x \times x)-(2 \times 3)$

$$
\begin{aligned}
& 2 x^{2}-6=12 \\
& 2 x^{2}=18 \\
& x^{2}=9 \\
& x=\sqrt{9} \\
& x= \pm 3 \\
& \therefore x=3 \text { Ans }
\end{aligned}
$$

3. (a) Deter $\mathrm{M}=(3 \times x)-(5 \times-2)$

$$
\begin{aligned}
& 22=3 x-(-10) \\
& 22=3 x+10 \\
& 22-10=3 x \\
& 12=3 x \\
& x=4 \text { Ans }
\end{aligned}
$$

(b) $A=\left(\begin{array}{cc}2 \times 3 & 2 \\ 3 & 3\end{array}\right)=\left(\begin{array}{ll}6 & 2 \\ 3 & 3\end{array}\right)$ $A^{-1}=\frac{1}{12}\left(\begin{array}{cc}3 & -2 \\ -3 & 6\end{array}\right)$ Ans
(b) $M=\left(\begin{array}{cc}3 & -2 \\ 5 & 4\end{array}\right)$
$M^{-1}=\frac{1}{22}\left(\begin{array}{cc}4 & 2 \\ -5 & 3\end{array}\right)$ Ans
4. (a) $|\mathrm{K}|=(10 \times-2)-(11 \times-2)$
(b) $K^{-1}=\frac{1}{2}\left(\begin{array}{cc}-2 & 2 \\ -11 & 10\end{array}\right)$ Ans

$$
\begin{aligned}
& =-20-(-22) \\
& =-20+22
\end{aligned}
$$

\therefore deter $K=2$ Ans
5. (a) deter $\mathrm{Q}=(3 \times 4)-(x \times-2)$
(b) $Q=\left(\begin{array}{cc}3 & -2 \\ -5 & 4\end{array}\right)$

$$
\begin{gathered}
2=12-(-2 x) \\
2=12+2 x \\
2-12=2 x \\
-10=2 x \\
\boldsymbol{x}=-\mathbf{5} \text { Ans }
\end{gathered}
$$

TOPIC 3: SETS

1. (i)

2. (i) $4+x+3+7=22$
$x+14=22$
$x=22-14$
$\boldsymbol{x}=8$ Ans
(ii) (a) Physics only $=\mathbf{6}$ students Ans
(b) two subject only $=2+5$
= 7 students Ans
(c) Maths and Physics not chem = $\mathbf{2}$ Ans
3. (i)

(ii) (a) only 1 mode of transport $=7+14+7=\mathbf{2 8}$
(b) 2 different modes of transport

$$
\begin{aligned}
& =4+2+3+8 \\
& =17 \text { Ans }
\end{aligned}
$$

4. (i) $2 y+1=7$

$$
\begin{aligned}
& 2 y=7-1 \\
& 2 y=6 \rightarrow \boldsymbol{y}=\mathbf{3} \text { Ans }
\end{aligned}
$$

(ii) (a) Victoria falls but not Gonya $=6+2=8$ students
(b) two tourist attraction only $=4+1+2=7$ students
(c) one tourists attraction only $=6+8+7=21$ students
5. (i)

(ii) (a) Music only $=5$ villagers
(b) one type only $=10+9+5$
$=24$ villagers
(c) two types of programs only $=8+7+5$ $=20$ Villagers

TOPIC 4: PROBABILITY

1. Total $6+9=15$ (hint: use the tree diagram for easy calculations of probabilities)

BB

BR

RB

RR

$$
\begin{array}{rlrl}
\text { (a) } P(\text { one is black }) & =P(B B)+P(B R)+P(R B) & \text { (b) } P(\text { different colour })=P(B R)+P(R B) \\
& =\left(\frac{6}{15} \times \frac{5}{14}\right)+\left(\frac{6}{15} \times \frac{9}{14}\right)+\left(\frac{9}{15} \times \frac{6}{14}\right) & & =\left(\frac{6}{15} \times \frac{9}{14}\right)+\left(\frac{9}{15} \times \frac{6}{14}\right. \\
& =\frac{30}{210}+\frac{54}{210}+\frac{54}{210} & =\frac{54}{210}+\frac{54}{210} \\
& =\frac{138}{210} & =\frac{108}{210} \\
& =\frac{23}{35} \text { Ans } & =\frac{18}{35} \text { Ans }
\end{array}
$$

2. (a) Total $20+12+4=36$

(b) $P($ both white $)=P(W W)$

$$
\begin{aligned}
& =\frac{4}{36} \times \frac{3}{35} \\
& =\frac{12}{1260} \\
& =\frac{1}{105} \text { Ans }
\end{aligned}
$$

3. (a) Total $5+4+3=12$

(b) $\mathrm{P}($ Same colour $)=P(W W)+P(B B)+(Y Y)$

$$
\begin{aligned}
& =\left(\frac{5}{12} \times \frac{4}{11}\right)+\left(\frac{4}{12} \times \frac{3}{11}\right)+\left(\frac{3}{12} \times \frac{2}{11}\right) \\
& =\frac{20}{132}+\frac{12}{132}+\frac{6}{132}=\frac{38}{132}=\frac{19}{69} \text { Ans }
\end{aligned}
$$

4. Faulty $=3$ and $\operatorname{good}=10-3=7$

Use a tree diagram below for easy calculations

(a) $P($ both good $)=P(G, G)$

$$
\begin{aligned}
& =\left(\frac{7}{10} \times \frac{6}{9}\right) \\
& =\frac{56}{90} \\
& =\frac{7}{15} \text { Ans }
\end{aligned}
$$

(b) P (one is faulty and the one is good) $=P(G, F)+P(F, G)$

$$
\begin{gathered}
=\left(\frac{7}{10} \times \frac{3}{9}\right)+\left(\frac{3}{10} \times \frac{7}{9}\right) \\
=\frac{21}{90}+\frac{21}{90} \\
=\frac{42}{90} \\
=\frac{7}{15} \text { Ans }
\end{gathered}
$$

5. $P($ negative $)=1-P($ positive $)$

$$
\begin{aligned}
& =1-0.6 \\
& =0.4
\end{aligned}
$$

(a) $\mathbf{P}(1$ negative \& other positive $)=(0.6 \times 0.4)+(0.4 \times 0.6)$

$$
\begin{aligned}
& =0.24+0.24 \\
& =0.48
\end{aligned}
$$

(b) $P($ both positive $)=(0.4 \times 0.4)$

$$
=0.16 \text { Ans }
$$

TOPIC 5: SEQUENCES AND SERIES

1. (a) $k+4, k, 2 k-15$
(b) $k+4, k, 2 k-15$
$\frac{k}{k+4}=\frac{2 k-15}{k}$
$k^{2}=(k+4)(2 k-15)$
$k^{2}=2 k^{2}-15 k+8 k-60$
$2 k^{2}-k^{2}-7 k-60=0$
$k^{2}-7 k-60=0$
$k^{2}+5 k-12 k-60=0$
$k(k+5)-12(k+5)=0$
$(k+5)(k-12)=0$
$k=-5$ or $k=12$
$\therefore k=12$ Ans
2. (a) $T_{n}=a r^{n-1}$
$T_{3}=a r^{3-1}$
$\frac{2}{9}=a r^{2}$
$a=\frac{2}{9 r^{2}}$ equation (i)
$T_{4}=a r^{4-1}$
$\frac{2}{27}=a r^{3}$ \qquad Equation (ii)
Replacing a by $\frac{2}{9 r^{2}}$ in (ii) we have
$\frac{2}{27}=\frac{2}{9 r^{2}} \times r^{3}$
$\frac{2}{27}=\frac{2 r}{9}$
$54 r=18$
$r=\frac{18}{54}$
$r=\frac{1}{3}$
$a=\frac{2}{9 \times\left(\frac{1}{3}\right)^{2}}=\frac{2}{9 \times \frac{1}{9}}$
$a=2$
\therefore the first term is 2 and common ratio is $\frac{1}{3}$ Ans
(b) $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{5}=\frac{2\left(1-\left(\frac{1}{3}\right)^{5}\right)}{1-\frac{1}{3}}$
$S_{5}=\frac{2\left(1-\frac{1}{3^{5}}\right)}{\frac{2}{3}}$
$S_{5}=2\left(1-\frac{1}{243}\right) \div \frac{2}{3}$
$S_{5}=2\left(\frac{243-1}{243}\right) \times \frac{3}{2}$
$S_{5}=3\left(\frac{242}{243}\right)$

$$
S_{5}=\frac{242}{81}=2 \frac{80}{81}=2.99 \mathrm{Ans}
$$

(c) $S_{\infty}=\frac{a}{1-r}$
$S_{\infty}=\frac{2}{1-\frac{1}{3}}$
$S_{\infty}=\frac{2}{\frac{2}{3}}$
$S_{\infty}=3$ Ans
3. (a) $r=\frac{5}{20}=\frac{1}{4}=0.25$
(b) $T_{n}=a r^{n-1}$

$$
\begin{aligned}
& T_{n}=20\left(\frac{1}{4}\right)^{n-1} \\
& T_{n}=20 \frac{1^{n-1}}{4^{n-1}} \\
& \therefore \boldsymbol{T}_{\boldsymbol{n}}=\frac{\mathbf{2 0}}{4^{n-1}} \text { Ans }
\end{aligned}
$$

4. (a) to find n, we use the common ratio formula

That is $\mathrm{r}=\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\cdots \frac{T_{n}}{T_{n-1}}$
$\frac{10+n}{6+n}=\frac{15+n}{10+n}$
$(10+n)(10+n)=(6+n)(15+n)$
$100+20 n+n^{2}=90+21 n+n^{2}$
$100-90=21 n-20 n$
$10=n$
$\therefore n=10$
The GP is: $16,20,25 \ldots$
(b) $r=\frac{20}{16}=\frac{5}{4}$ or $\mathbf{1 . 2 5}$
5. (a) We know that $\mathrm{r}=\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\cdots \frac{T_{n}}{T_{n-1}}$ $\frac{x-3}{x+1}=\frac{x-1}{x-3}$
$(x-3)(x-3)=(x-1)(x+1)$
$x^{2}-6 x+9=x^{2}-1$
$-6 x=-1-9$
$-6 x=-10$
$x=\frac{10}{6}$
$x=\frac{5}{3}$
$x=1 \frac{2}{3}$ Ans
Hence the GP is; $\frac{5}{3}+1 . \frac{5}{3}-3, \frac{5}{3}-1 \ldots \ldots .$.
$\frac{8}{3}, \frac{-4}{3}, \frac{2}{3}, \ldots$
(b) the first term " a " $=\frac{8}{3}$ Ans
(c) $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad$ for $r<1$
$S_{8}=\frac{20\left(1-(0.25)^{8}\right)}{1-0.25}$
$S_{8}=\frac{20(1-0.00001558906)}{0.75}$
$S_{8}=\frac{20(0.9999847412)}{0.75}$
$S_{8}=26.66625977$

$$
S_{8}=27.7 \text { Ans }
$$

(c) $\quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \quad$ for $r>1$

$$
S_{6}=\frac{16\left((1.25)^{6}-1\right)}{1.25-1}
$$

$$
S_{6}=\frac{16(3.814697266-1)}{0.25}
$$

$$
\mathrm{S}_{6}=\frac{16(2.814697266)}{0.25}
$$

$$
\mathrm{S}_{6}=\frac{45.03515625}{0.25}
$$

$$
\mathrm{S}_{6}=180.140625
$$

$$
\therefore \mathrm{S}_{6}=180 \text { Ans }
$$

(C) $\quad S_{\infty}=\frac{a}{1-r}$

$$
S_{\infty}=\frac{8 / 3}{1-\left(-\frac{1}{2}\right)}
$$

$$
S_{\infty}=\frac{8 / 3}{\frac{3}{2}}
$$

$$
S_{\infty}=\frac{8}{3} \div \frac{3}{2}
$$

$$
S_{\infty}=\frac{8}{3} \times \frac{2}{3}
$$

$$
S_{\infty}=\frac{16}{9}
$$

$$
\therefore S_{\infty}=1 \frac{7}{9} \text { Ans }
$$

TOPIC 6: PSEUDO CODE AND FLOWCHART

1.

2.

3. Start

Enter radius
If radius < 0
Then display "error message "
Else Area $=\frac{1}{2} * r * r * \sin \theta$
End if
Display Area
Stop
4. Start

Enter a and r
If $|r|<1$
Then sum to infinity $=\frac{a}{1-r}$
Else
End if
Display sum to infinity
Stop
5.

TOPIC 7: LOCI AND CONSTRUCTION

1.

2.

4.

5.

TOPIC 8: CALCULUS

1. (a) $\int_{-1}^{2}\left(2+x-x^{2}\right) d x$
$=\left[2 x+\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-1}^{2}$
$=\left(\frac{2(2)}{1}+\frac{2^{2}}{2}-\frac{2^{3}}{3}\right)-\left(2(-1)-\frac{(-1)^{2}}{2}-\frac{(-1)^{3}}{3}\right)$
$=\left(4+2-\frac{8}{3}\right)-\left(2-\frac{1}{2}+\frac{1}{3}\right)$
$=\left(\frac{10}{3}\right)-\left(\frac{-7}{6}\right)$
$=\frac{10}{3}+\frac{7}{6}$
$=\frac{27}{6}$
$=4.5$ Ans
(b) $y=x+\frac{4}{x} \rightarrow \frac{d y}{d x}=1-\frac{4}{x^{2}}$ at $x=4$
$\mathrm{m}_{1}=\frac{d y}{d x}=1-\frac{4}{4^{2}}=1-\frac{4}{16}=\frac{16-4}{16}=\frac{12}{16}=\frac{3}{4}$
$m_{1} \times m_{2}=-1 \quad$ (tangent \perp to normal)
$m_{2}=-1 \times \frac{4}{3}=-\frac{4}{3}$
To find y replace $x=4$ in the original equat
$y=4+\frac{4}{4}=4+1=5$
\therefore Equation of the normal is given by

$$
\begin{aligned}
& y-y_{1}=m_{2}\left(x-x_{1}\right) \\
& y-5=-\frac{4}{3}(x-4) \\
& y=-\frac{4}{3} x+\frac{16}{3}+5 \\
& y=-\frac{4}{3} x+\frac{\mathbf{3 1}}{3} \text { Multiplying through by }
\end{aligned}
$$

3

$$
3 y=-4 x+31 \text { Ans }
$$

2. (a) $\begin{aligned} & \int_{0}^{1}\left(x^{2}-2 x-3\right) d x \\ &=\left[\frac{x^{3}}{3}-\frac{2 x^{2}}{2}-3 x\right]_{0}^{1} \\ &=\left(\frac{1^{3}}{3}-\frac{2(1)^{2}}{2}-(3)\right)-\left(\frac{0}{3}-\frac{0}{2}+3(0)\right) \\ &=\left(\frac{1}{3}-1-3\right)-0 \\ &= \frac{1}{3}-4-0 \\ &= \frac{1-12}{3} \\ &=-\frac{11}{3} \\ &=-3 \frac{2}{3} \text { Ans }\end{aligned}$

$$
\begin{aligned}
& =\left[\frac{x^{3}}{3}-\frac{2 x^{2}}{2}-3 x\right]_{0}^{1} \\
& =\left(\frac{1^{3}}{3}-\frac{2(1)^{2}}{2}-(3)\right)-\left(\frac{0}{3}-\frac{0}{2}+3(0)\right) \\
& =\left(\frac{1}{3}-1-3\right)-0 \\
& =\frac{1}{3}-4-0 \\
& =\frac{1-12}{3} \\
& =-\frac{11}{3} \\
& =-3 \frac{2}{3} \text { Ans }
\end{aligned}
$$

(b) $y=2 x^{2}-3 x-2$

$$
\frac{d y}{d x}=4 x-3 \text { at }(3,7) \rightarrow \frac{d y}{d x}=m_{1}=4(3)-3=9
$$

$m_{2}=-1 \times \frac{1}{9}=-\frac{1}{9}$
\therefore equation of the normal to the curve is given by

$$
\begin{gathered}
y-y_{1}=m_{2}\left(x-x_{1}\right) \\
y-7=-\frac{1}{9}(x-3) \\
y-7=-\frac{1}{9} x+\frac{3}{9} \\
y=-\frac{1}{9} x+\frac{3}{9}+\frac{7}{1} \\
y=-\frac{1}{9} x+\frac{3+63}{9} \\
y=-\frac{1}{9} x+\frac{66}{9} \\
9 y=-x+66 \text { Ans }
\end{gathered}
$$

3. (a) $y=2 x^{3}-3 x^{2}-36 x-3$
$\frac{d y}{d x}=6 x^{2}-6 x-36$
$0=6 x^{2}-6 x-36$ dividing through by 6
$x^{2}-x-6=0$
$(x+2)(x-3)=0$
$x=-2$ or $x=3$
When $x=-2$
$y=-16-12+72-3$ $y=41$
When $x=3$
$y=2(-2)^{3}-3(-2)^{2}-36(-2)-3$
$y=2(3)^{3}-3(3)^{2}-36(3)-3$
$y=-84$
\therefore the coordinates on curve are $(-2,41)$ and $(3,-84)$ Ans
4. (a) $\int_{2}^{5}\left(3 x^{2}+2\right) d x$

$$
\begin{aligned}
& =\left[\frac{3 x^{2+1}}{2+1}+\frac{2 x^{0+1}}{0+1}\right]_{2}^{5} \\
& =\left[\frac{3 x^{3}}{3}+\frac{2 x}{1}\right]_{2}^{5} \\
& =\left[x^{3}+2 x\right]_{2}^{5} \\
& =\left((5)^{3}+2(5)\right)-\left(2^{3}+2(2)\right) \\
& =(125+10)-(8+4) \\
& =(135)-(12) \\
& =\mathbf{1 2 3 A n s}
\end{aligned}
$$

(b) $\quad y=x^{2}-3 x-4$

$$
\begin{aligned}
& m=\frac{d y}{d x}=2 x-3 \text { at } x=2, m=2(2)-3=1 \\
& y=(2)^{2}-3(2)-4=-6
\end{aligned}
$$

\therefore equation of the tangent is given by

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-(-6)=1(x-2) \\
& y+6=x-2 \\
& \boldsymbol{y}=\boldsymbol{x}+\mathbf{8} \text { Ans }
\end{aligned}
$$

5. (a) $y=x^{3}-\frac{3}{2} x^{2}$
$\frac{d y}{d x}=3 x^{2}-3 x=3(2)^{2}-3(2)=6$
$\therefore m_{1}=6$ which is the gradient of tangent to the curve we know that tangent is perpendicular to the normal,
$m_{1} m_{2}=-1$, at $x=2, y=2$
$m_{2}=-\frac{1}{6}$ Which is the gradient of the normal?
$y-y_{1}=m_{2}\left(x-x_{1}\right)(2,2)$
$y-2=-\frac{1}{6}(x-2)$
$y=-\frac{1}{6} x+\frac{2}{6}+2$
$y=-\frac{1}{6} x+\frac{2+12}{6}$
$y=-\frac{1}{6} x+\frac{14}{6} \rightarrow$ Multiplying throughout by 6, we get
$6 y=-x+14$ Ans
(b) At the stationary points, $\frac{d y}{d x}=0$
$3 x^{2}-3 x=0$
$3 x(x-1)=0$
$x=0$ or $x=1$
For $x=0$.
$y=(0)^{3}-\frac{3}{2}(0)^{2}=0$
For $x=1$
$y=(1)^{3}-\frac{3}{2}(1)^{2}=-\frac{1}{2}$
\therefore the stationary points are;
$(0,0)$ and $\left(1,-\frac{1}{2}\right)$ Ans

TOPIC 9: VECTORS

1. (i) (a) $\overrightarrow{A E}=\frac{1}{3} \overrightarrow{A C}$

$$
\begin{gathered}
\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C} \\
\overrightarrow{A C}=\underline{a}+2 \underline{b} \\
\therefore \overrightarrow{A E}=\frac{1}{3}(\underline{a}+2 \underline{b}) \text { Ans }
\end{gathered}
$$

(b) $\overrightarrow{B E}=\overrightarrow{B A}+\overrightarrow{A E}$
$\overrightarrow{B E}=-\underline{a}+\frac{1}{3}(\underline{a}+2 \underline{b})$
$\overrightarrow{B E}=-\underline{a}+\frac{1}{3} \underline{a}+\frac{2}{3} \underline{b}$
$\overrightarrow{B E}=\frac{-3 a+a}{3}+\frac{2}{3} \underline{b}$
$\overrightarrow{B E}=-\frac{2}{3} a+\frac{2}{3} \underline{b}$
$\therefore \overrightarrow{B E}=\frac{2}{3} \underline{\mathrm{~b}}-\frac{2}{3} \underline{a}$
$\overrightarrow{B E}=\frac{2}{3}(\underline{b}-\underline{a})$ Ans
2. (i) (a) $\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{PO}}+\overrightarrow{\mathrm{OQ}}$

$$
\overrightarrow{\mathrm{PQ}}=-2 \underline{p}+4 \underline{q}
$$

$\overrightarrow{\mathrm{PQ}}=4 \underline{q}-2 \underline{p}$
$\therefore \overrightarrow{P Q}=2(2 q-p) A n s$
(b) $\overrightarrow{\mathrm{PX}}=\frac{1}{3} \overrightarrow{\mathrm{PQ}}$
$\overrightarrow{\mathrm{PX}}=\frac{1}{3}(4 q-2 p)$ Ans
(c) $\overrightarrow{\mathrm{OX}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PX}}$
$\overrightarrow{\mathrm{OX}}=2 \mathrm{p}+\frac{4}{3} \mathrm{q}-\frac{2}{3} \mathrm{p}$
$\overrightarrow{\mathrm{OX}}=2 \mathrm{p}-\frac{2}{3} \mathrm{p}-\frac{4}{3} \mathrm{q}$
$\overrightarrow{\mathrm{OX}}=\frac{6 \mathrm{p}-2 \mathrm{p}}{3}-\frac{4 \mathrm{q}}{3}$
$\overrightarrow{\mathbf{O X}}=\frac{4}{3} p-\frac{4}{3} q$
(ii) Since $\overrightarrow{B E}=\frac{2}{3}(\underline{\boldsymbol{b}}-\underline{\boldsymbol{a}})$

$$
\text { and } \overrightarrow{B D}=\underline{\boldsymbol{b}}-\underline{\boldsymbol{a}}
$$

$$
\overrightarrow{B E}=\frac{2}{3} \overrightarrow{B D}
$$

\therefore the points $\boldsymbol{B}, \boldsymbol{E}$ and \boldsymbol{D} are collinear
(c) $\begin{aligned} \overrightarrow{B D} & =-\overrightarrow{A B}+\overrightarrow{A D} \\ \overrightarrow{B D} & =-\underline{a}+\underline{b} \\ \overrightarrow{B D} & =\underline{\boldsymbol{b}}-\underline{\boldsymbol{a}} \text { Ans }\end{aligned}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{OC}}=\mathrm{h} \overrightarrow{\mathrm{OX}} \\
& \overrightarrow{\mathrm{OC}}=\mathrm{h}\left(\frac{4 \mathrm{p}}{3}+\frac{4 \mathrm{q}}{3}\right) \\
& \overrightarrow{\mathrm{OC}}=\frac{4 \mathrm{~h}}{3} \mathrm{p}+\frac{4 \mathrm{~h}}{3} \mathrm{q} \\
& \therefore \quad \overrightarrow{\mathrm{CQ}}=\overrightarrow{\mathrm{CO}}+\overrightarrow{\mathrm{OQ}} \\
& \overrightarrow{C Q}=-\left(\frac{4 h}{3} \underline{p}+\frac{4 h}{3} q\right)+4 \underline{q} \\
& \overrightarrow{\mathrm{CQ}}=4 \mathrm{q}-\frac{4 \mathrm{~h}}{3} \mathrm{q}-\frac{4 \mathrm{~h}}{3} \mathrm{p} \\
& \overrightarrow{C Q}=4\left(1-\frac{h}{3}\right) q-\frac{4 h}{3} p _ \text {hence shown }
\end{aligned}
$$

Get your own cony direct from the Authors

3. (a) $\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}$

$$
\overrightarrow{\mathrm{OB}}=\underline{a}+2 \underline{b}
$$

(b) To find $\overrightarrow{\mathrm{OE}}$, first find $\overrightarrow{\mathrm{CA}}$ and
$\overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{CO}}+\overrightarrow{\mathrm{OA}}$
$\overrightarrow{C A}=-2 \underline{b}+\underline{a}$
$\overrightarrow{A E}=-\frac{3}{4} \overrightarrow{C A}$
$\overrightarrow{A E}=-\frac{3}{4}(\underline{a}-2 \underline{b})$
$\therefore \overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AE}}$
$\overrightarrow{O E}=\underline{a}-\frac{3}{4}(\underline{a}-2 \underline{b})$
$\overrightarrow{O E}=\underline{a}-\frac{3}{4} \underline{a}+\frac{6}{4} \underline{b}$
$\overrightarrow{O E}=\frac{4 a-3 a}{4}+\frac{3}{4} \underline{b}$
$\overrightarrow{O E}=\frac{1}{4} \underline{a}+\frac{3}{4} \underline{b}$
$\overrightarrow{O E}=\frac{1}{4}(a+3 \underline{b})$ Ans
(b) $\overrightarrow{O D}=\overrightarrow{O A}+\overrightarrow{A D}$
$\overrightarrow{O D}=\overrightarrow{O A}+\frac{1}{3} \overrightarrow{A B}$
$\overrightarrow{O D}=3 \underline{a}+\frac{1}{3}(6 \underline{b}-3 \underline{a})$
$\overrightarrow{O D}=3 \underline{a}+2 \underline{b}-\underline{a}$
$\overrightarrow{O D}=2 \underline{a}+2 \underline{b}$
$\overrightarrow{O D}=2(\underline{a}+\underline{b})$ Ans
4. (i) (a) $\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}$

$$
\begin{aligned}
& \overrightarrow{A B}=-3 \underline{a}+6 \underline{b} \\
\overrightarrow{A B} & =6 \underline{b}-3 \underline{a} \\
\therefore & \overrightarrow{A B}=3(2 \underline{b}-\underline{a}) \text { Ans }
\end{aligned}
$$

(ii) $\overrightarrow{B E}=h \overrightarrow{B C}$

$$
\begin{aligned}
& \overrightarrow{B E}=h\left(\frac{6}{5} \underline{a}-6 \underline{b}\right) \\
& \overrightarrow{\boldsymbol{B E}}=\mathbf{6}\left(\frac{\boldsymbol{h}}{5} \underline{a}-\boldsymbol{h} \underline{b}\right) \text { Ans }
\end{aligned}
$$

(b) $\overrightarrow{\mathrm{CD}}=\frac{1}{2} \overrightarrow{\mathrm{CA}}$
$\overrightarrow{\mathrm{CD}}=\frac{1}{2}(-2 \underline{b}+\underline{a})$
$\overrightarrow{C D}=-\underline{b}+\frac{1}{2} \underline{a}$.
$\overrightarrow{C D}=\frac{1}{2} a-\underline{b}$ Ans
(c) $\overrightarrow{B C}=\overrightarrow{B O}+\overrightarrow{O C}$
$\overrightarrow{B C}=\overrightarrow{-O B}+\frac{2}{5} \overrightarrow{O A}$
$\overrightarrow{B C}=-6 \underline{b}+\frac{2}{5}(3 \underline{a})$
$\overrightarrow{B C}=-6 b+\frac{6 a}{5}$
$\overrightarrow{B C}=\frac{6}{5} \underline{a}-6 \underline{b}$ Ans

TOPIC 10: TRIGONOMETRY

1. (a)(i) $\frac{n}{\sin N}=\frac{r}{\sin R}$

$$
\begin{gathered}
\frac{n}{\sin 60}=\frac{80}{\sin 52} \\
n=\frac{80 \sin 60}{\sin 52}
\end{gathered}
$$

$$
n=87.92016097
$$

$\therefore \mathbf{K R}=\mathbf{8 7 . 9} \mathbf{~ m}$ Ans
(ii) Area of $\triangle K N B$

$$
\begin{aligned}
\mathrm{A} & =\frac{1}{2} k n \sin N \\
\mathrm{~A} & =\frac{1}{2}(50)(80) \sin 60^{\circ} \\
\mathrm{A} & =2000 \sin 60^{\circ} \\
\mathrm{A} & =1732.050808 \\
\therefore \boldsymbol{A} & =\mathbf{1 8 3 0 m}^{2} \text { Ans }
\end{aligned}
$$

(b) Shortest distance from R to KN

$$
\begin{aligned}
\text { Sd } & =\frac{2 A}{b} \\
\text { S.d } & =\frac{3260}{80} \\
& =\mathbf{4 0 . 8 m} \text { Ans }
\end{aligned}
$$

(c) Graph of $y=\cos \theta$

2. (a) (i) $\frac{b}{\sin B}=\frac{c}{\sin C}$

$$
\begin{gathered}
\frac{b}{\sin 79}=\frac{15}{\sin 40} \\
b=\frac{15 \sin 79}{\sin 40} \\
b=22.9
\end{gathered}
$$

AC $=\mathbf{2 2 . 9} \mathbf{k m}$ Ans
(ii) first find angle BAC (iii) $S . d=\frac{2 \times 150}{22.9}$
$=13.1 \mathrm{Ans}$
(b) $\cos \theta=0.937$

$$
\begin{aligned}
& \theta=\left(\cos ^{-1}(0.937)\right. \\
& \theta=20.4^{\circ}
\end{aligned}
$$

$\left.\theta=360^{\circ}-20.4\right)=339.4$
$\therefore \theta=20.4$ and $\theta=339.4$ Ans
(c) $y=\sin \theta$

θ	0°	90°	180°	270°	360°
$\operatorname{Sin} \theta$	0	1	0	-1	0

3. (a) (i) $\mathrm{A}=\frac{1}{2} t s \sin H$

$$
\begin{aligned}
A & =\frac{1}{2} \times 1.3 \times 1.9 \sin 130^{\circ} \\
\mathrm{A} & =1.235 \sin 130^{\circ} \\
\mathrm{A} & =0.946 \\
\mathbf{A} & =\mathbf{0 . 9 4 6} \mathbf{k m}^{2} \text { Ans }
\end{aligned}
$$

(ii) $h^{2}=t^{2}+s^{2}-2 t s \cos H$

$$
\begin{aligned}
& \mathrm{h}^{2}=(1.3)^{2}+(1.9)^{2}-2(1.3)(1.9) \cos 130^{\circ} \\
& \mathrm{h}^{2}=5.3-(-3.175370792) \\
& \mathrm{h}^{2}=5.3+3.17537 \\
& \mathrm{~h}^{2}=8.475370792 \\
& \mathrm{~h}^{2}=\sqrt{8.475370792} \\
& \mathrm{~h}=2.911249009 \\
& \therefore \text { TS }=2.91 \mathrm{~km} \text { Ans }
\end{aligned}
$$

(b) $\cos \theta=\frac{2}{3}$

$$
\theta=\cos ^{-1}\left(\frac{2}{3}\right)
$$

$$
\theta=48.1896851
$$

$$
\therefore \theta=48.2^{\circ} \text { Ans }
$$

4. (a) (i) to find $P Q$, first find angle R

$$
\begin{aligned}
& \widehat{R}=180^{\circ}-\left(46^{\circ}+36^{\circ}\right) \\
& =98^{\circ} \\
& \therefore \frac{\sin R}{r}=\frac{\sin P}{p} \\
& \frac{\sin 98^{\circ}}{r}=\frac{\sin 46^{\circ}}{36.5} \\
& r \sin 46^{\circ}=36.5 \sin 98^{\circ} \\
& r=\frac{36.5 \sin 98^{\circ}}{\sin 46^{\circ}}
\end{aligned}
$$

(ii) $\mathrm{A}=\frac{1}{2} \times \mathrm{p} \times \mathrm{r} \times \sin \mathrm{Q}$

$$
\begin{aligned}
& =\frac{1}{2} \times 36.5 \times 50.2 \times \sin 36^{\circ} \\
& =916.15 \sin 36^{\circ}
\end{aligned}
$$

$$
\therefore \mathrm{A}=538.4994589 \approx \mathbf{5 3 8 . 5} \mathbf{k m}^{2} \text { Ans }
$$

(iii) Shortest distance $=\frac{2 A}{b}=\frac{2 \times 538.2}{50.2}=\mathbf{1 0 . 7} \mathbf{~ k m ~ A}$
(b) $\sin \theta=0.6792$
$\theta=\sin ^{-1}(0.6792) \rightarrow$ press shift $/ 2^{\text {nd }} f$ and then \sin

$$
\begin{aligned}
& r=50.24716343 \\
& \therefore \mathbf{P Q}=50.2 \mathrm{~km} \text { Ans }
\end{aligned}
$$

5. (a) (i) $\mathrm{k}^{2}=\mathrm{i}^{2}+\mathrm{m}^{2}-2 \mathrm{imcos} \mathrm{K}$

$$
\begin{aligned}
& \mathrm{k}^{2}=5^{2}+3^{2}-2(5)(3) \cos 110^{\circ} \\
& \mathrm{k}^{2}=34-(-10.2606043) \\
& \mathrm{k}^{2}=44.26060643 \\
& \mathrm{k}=\sqrt{44.26060643} \\
& \mathrm{k}=6.656864368
\end{aligned}
$$

$$
\therefore \mathrm{MI}=6.65 \mathrm{~km} \text { Ans }
$$

$\theta=42.8^{\circ}$ and $\theta=180-42.8=137.2^{\circ}$
$\therefore \theta=42.8^{\circ}, 137.2^{\circ}$ Ans
$\begin{array}{ll}\text { (ii) } \mathrm{A}=\frac{1}{2} \times i \times m \sin K & \text { (iii) shortest } \mathrm{d}=\frac{2 A}{b}\end{array}$

$$
\begin{aligned}
& A=\frac{1}{2}(5)(3) \sin 110^{\circ} \\
& A=7.5 \sin 110^{\circ} \\
& A=7.047694656 \\
& A=7.05 \mathbf{k m}^{2} \text { Ans }
\end{aligned}
$$

$$
=\frac{2 \times 7.05}{6.65}
$$

$=2.12 \mathrm{~km}$ Ans
(b) $\tan \theta=0.7$

$$
\begin{aligned}
& \theta=\tan ^{-1}(0.7) \\
& \theta=34.9920202 \\
& \theta=34.9920202 \\
& \boldsymbol{\theta}=35^{\circ} \text { Ans }
\end{aligned}
$$

TOPIC 11: MENSURATION

1. $\begin{aligned} & \frac{H}{H-11.4}=\frac{14}{8} \\ & 14(\mathrm{H}-11.4)=8 \mathrm{H} \\ & 14 \mathrm{H}-159.6=8 \mathrm{H} \\ & 14 \mathrm{H}-8 \mathrm{H}=159.6 \\ & 6 \mathrm{H}=159.6 \\ & \mathrm{H}=26.6 \\ & \mathrm{~h}=26.6-11.4=15.2 \mathrm{~cm}\end{aligned}$
2. $\frac{H}{H-9}=\frac{10}{4}$

$$
\begin{aligned}
& 10(\mathrm{H}-9)=4 \mathrm{H} \\
& 10 \mathrm{H}-90=4 \mathrm{H} \\
& 10 \mathrm{H}-4 \mathrm{H}=90 \\
& 6 \mathrm{H}=90 \\
& \mathrm{H}=15 \\
& \therefore H=15 \mathrm{~cm} \text { and } h=15-9=6 \mathrm{~cm}
\end{aligned}
$$

$\therefore V=\frac{1}{3}(L B H-l b h)$
$V=\frac{1}{3}(14 \times 10 \times 26.6-8 \times 4 \times 15.6)$
$V=\frac{1}{3}(3724-486.4)$
$V=\frac{1}{3}(3237.6)$
$V=1079.2$
V $=1080$ cm 3 Ans
$\therefore \mathrm{V}=\frac{1}{3}\left[L^{2} H-l^{2} h\right] \quad$ (square base)
$\mathrm{V}=\frac{1}{3}\left[10^{2} \times 15-4^{2} \times 6\right]$
$V=\frac{1}{3}(1500-96)$
$\mathrm{V}=\frac{1}{3}(1404)$
$\mathrm{V}=468 \mathrm{~cm}^{3}$ Ans
3. First find the height of the small cone that was

$$
\begin{aligned}
\therefore V= & \frac{1}{3} \pi R^{2} H-\frac{1}{3} \pi r^{2} h \\
\mathrm{~V} & =\frac{1}{3} \pi\left(R^{2} H-r^{2} h\right) \\
\mathrm{V} & =\frac{3.142}{3}\left(21^{2} \times 30-7^{2} \times 10\right) \\
\mathrm{V} & =\frac{3.142}{3}(13230-490) \\
\mathrm{V} & =\frac{3.142}{3}(12740) \\
\mathrm{V} & =13343.02667 \\
\mathrm{~V} & =13300 \mathrm{~cm}^{\mathbf{3}} \text { Ans }
\end{aligned}
$$

$$
h=10
$$

$$
\boldsymbol{h}=\mathbf{1 0} \mathbf{c m} \text { and } H=10+20=\mathbf{3 0} \mathbf{c m}
$$

4. (i) Let height $\mathrm{EA}=x$, then
$\frac{x}{4}=\frac{15+x}{12}$

$$
12 x=4(15+x)
$$

$$
12 x=60+4 x
$$

$$
12 x-4 x=60
$$

$$
8 x=60
$$

$$
x=7.5
$$

$$
\therefore \mathbf{A E}=\mathbf{7 . 5} \text { And } A D=7.5+15=\mathbf{2 2 . 5} \mathbf{c m}
$$

(ii) Volume that remained is the that of the frustum

$$
\begin{aligned}
& \mathrm{V}=\frac{1}{3} \pi R^{2} H-\frac{1}{3} \pi r^{2} h \\
& \mathrm{~V}=\frac{1}{3} \pi\left(R^{2} H-r^{2} h\right) \\
& \mathrm{V}=\frac{1}{3} \times 3.142\left(12^{2} \times 22.5-4^{2} \times 7.5\right) \\
& \mathrm{V}=\frac{3.142}{3}(3240-120) \\
& \mathrm{V}=\frac{3.142}{3}(3120) \\
& \mathrm{V}=3267.68 \\
& \mathrm{~V}=3270 \mathrm{~cm}^{3} \text { (correct to } 3 \text { sig figures) }
\end{aligned}
$$

5. (a) $V=l b h$

$$
\begin{aligned}
& V=1.2 \times 0.9 \times 10 \\
& V=10.8 \mathrm{~cm}^{3} \\
& 1 \mathrm{~cm}^{3} \rightarrow 1000 l \\
& 10.8 \mathrm{~cm}^{3} \rightarrow x \\
& x=10.8 \times 1000 l \\
& x=10800 l \\
& \therefore V=10800 l(3 \text { sig fig })
\end{aligned}
$$

(b) first find the radius of a cone
$r^{2}=13^{2}-12^{2}$
$r^{2}=25$
$r=\sqrt{25}$
$\mathrm{r}=5 \mathrm{~cm}$
\therefore T.S. $A=\pi r^{2}+\pi r l$
T.S.A $=\pi r(r+l)$
T.S.A $=3.142 \times 5(5+13)$

$$
\text { T. S. } A=282.78 \mathrm{~cm}^{2}
$$

(Kachama Dickson.C)

TOPIC 9: EARRTH GEOMETRY

1. (a)

S
$\mathrm{AC}=\frac{\theta}{360} \times 2 \pi R$ where $\theta=15^{\circ}+35^{\circ}=50^{\circ}$
$\mathrm{AC}=\frac{50^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 6370$
AC $=\frac{2001454}{360}$
AC $=5,559.594444$
$\mathrm{AC}=\mathbf{5 , 5 6 0 k m}$ Ans
(b) (i) $\mathrm{BQ}=\frac{\alpha}{360} \times 2 \pi R \cos \theta$
(ii) longitude of $Q=70^{\circ}-9.9^{\circ}=60.1^{\circ}$

$$
900=\frac{2 \pi R \alpha \cos \theta}{360}
$$

$2 \pi R \cos \theta \alpha=900 \times 360^{\circ}$

$$
\begin{aligned}
& \alpha=\frac{32400}{2 \pi R \cos \theta} \\
& \alpha=\frac{32400}{\left(2 \times 3.142 \times 6370 \times \cos 35^{\circ}\right)} \\
& \alpha=9.88109
\end{aligned}
$$

\therefore the difference in longitude is 9.9°
2. (a) $\mathrm{D}=\frac{\theta}{360} \times 2 \pi R$ where $\theta=60^{\circ}+60^{\circ}=120^{\circ} \quad$ or $\mathrm{D}=\theta \times 60$
D $=\frac{120}{360} \times 2 \times 3.142 \times 3437$
$\mathrm{D}=120^{\circ} \times 60$
D $=\frac{2591772.96}{360}$
D $=7200 \mathrm{~nm}$ Ans
$\mathrm{D}=7199.369333$
\therefore distance BC $=7200 \mathrm{~nm}$ Ans
(b) To find speed, first find distance CD
$\mathrm{D}=\frac{\alpha}{360} \times 2 \pi R \cos \theta$
D $=\frac{120}{360} \times 2 \times \pi \times 3437 \cos 60$
D $=\frac{1295886.48}{360}$
$D=3599.684667$
\therefore speed $=\frac{D}{T}$
speed $=\frac{3600}{12}$
speed $=\mathbf{3 0 0}$ knots Ans

$$
D=3600 \mathrm{~nm}
$$

3. (a) Difference in latitudes between W and Y

$$
\boldsymbol{\theta}=80^{\circ}+30^{\circ}=\mathbf{1 1 0}^{\circ}
$$

(b) (i) $\mathrm{XZ}=\frac{\theta}{360} \times 2 \pi R$
(ii) $\mathrm{YZ}=\frac{\alpha}{360^{\circ}} \times 2 \pi R \cos \theta$ where $\alpha=15^{\circ}+105=120^{\circ}$
$X Z=\frac{110^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 3437$
$\mathrm{YZ}=\frac{120^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 3437 \times \cos 30^{\circ}$
$X Z=6599.421889$
$Y Z=\frac{2244541.224}{360}$
$X Z=6600 n m$ Ans
$Y Z=6234.836734$
YZ $=6230 \mathrm{~nm}$ Ans
4. (i)

(ii)(a) Distance $\mathrm{QR}=\frac{\theta}{360^{\circ}} \times 2 \pi R \quad \theta=80^{\circ}+85^{\circ}=165^{\circ}$
$Q R=\frac{165^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 3437$
$Q R=9899.132833$
QR $=9900$ nm Ans
(b) $\mathrm{C}=2 \pi R \cos \theta$

$$
\begin{aligned}
& C=21600 \cos \theta \\
& C=21600 \times \cos 85^{\circ} \\
& C=1882.564043 \\
& C=1900 \mathrm{~nm} \text { Ans }
\end{aligned}
$$

5. (a) Difference in latitudes

$$
\theta=50^{\circ}+70^{\circ}=120^{\circ}
$$

$$
\text { (b) } \begin{aligned}
\mathrm{C} & =2 \pi R \cos \theta \\
\mathrm{C} & =21600 \operatorname{Cos} 50^{\circ} \\
\mathrm{C} & =13884.21237 \mathrm{~nm} \\
\mathrm{C} & =13900 \mathrm{~nm}
\end{aligned}
$$

(c) $\mathrm{AD}=\frac{\theta}{360^{\circ}} \times 2 \pi R$
$\mathrm{AD}=\frac{120^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 3437$
AD $=7199.369333$
$A D=7200 n m$ Ans

TOPIC 13: QUADRATIC FUNCTIONS

1.

2. (a) (i) $y=x^{3}+x^{2}-12 x-\left(x^{3}+x^{2}-12 x\right)$
$y=x^{3}+x^{2}-12 x-x^{3}-x^{2}+12 x$
$y=0 \leftrightarrow x$-axis
$\therefore \boldsymbol{x}=-4, x=0$ and $x=3$
Note that the values of x are the points where
the curve $y=x^{3}+x^{2}-12 x$ meets the line $y=0$
(ii) From part (i) we can see that
$y=x+10$
when we draw this line on the same graph using any points we have $x=-3.7 \pm 1, x=-0.7 \pm$ and $x=3.5 \pm 1$

\boldsymbol{x}	-3	0	2	3

y	7	10	12	13

2. (b)(i) Draw a straight line touching only at ($-3,18$) and pick any two points lying on the same line
e. $g(-3,18)$ and $(-4.5,4)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{4-18}{-4.5-(-3)}$
$m=\frac{-14}{-1.5}$
$m=9.3 \pm 1$
(ii) From the graph, we can see that the required area is simply the areas of the two trapeziums

$$
\begin{aligned}
& \mathrm{A}=\frac{1}{2}(a+b) h \\
& \mathrm{~A}=\frac{1}{2}(28+30) 1+\frac{1}{2}(30+22) 1 \\
& \mathrm{~A}=\frac{1}{2}(58)+\frac{1}{2}(52) \\
& \mathrm{A}=29+26 \\
& \mathrm{~A}=\mathbf{5 5} \pm \mathbf{1} \text { Square units }
\end{aligned}
$$

3. (a) (i) $y=x^{3}+3 x^{2}-x-3-\left(x^{3}+3 x^{2}-x-3\right)$
$y=x^{3}+3 x^{2}-x-3-x^{3}-3 x^{2}+x+3$ $y=0$
On the graph, when $y=0,(x-$ axis $)$
$\boldsymbol{x}=-3, \boldsymbol{x}=-1$ and $\boldsymbol{x}=1$
(ii) $y=x^{3}+3 x^{2}-x-3-\left(x^{3}+3 x^{2}-x-5\right)$
$\left.y=x^{3}+3 x^{2}-x-3-x^{3}-3 x^{2}+x+5\right)$
$y=-3+5$
$y=2$
On the graph when $\mathrm{y}=2$, then
$x=-2.6, x=-1.5$ and $x=1.2$ Ans
(b) (i) to find the gradient, draw a straight line touching the curve only at $(-3,0)$ and pick any two points lying on this line for Example ($-3,0$) and ($-2,8$)
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{8-0}{-2-(-3)}$
$m=\frac{8}{1}=8$ Ans
(ii) Area $=\mathrm{A}$ of rectangle + trapezium

$$
\begin{aligned}
& \mathrm{A}=1 \times b+\frac{1}{2}(a+b) h \\
& \mathrm{~A}=1 \times 20+\frac{1}{2}(20+5) \\
& \mathrm{A}=20+12.5 \\
& \mathrm{~A}=\mathbf{3 2 . 5} \text { square units }
\end{aligned}
$$

4. (a) To find the gradient of the curve, simply draw a straight line touching the curve at $(2,5)$ and pick any two points lying on the line drawn, for example $(2,5)$ and $(1,-7)$ and use the gradient formula to find the gradient

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m & =\frac{-7-5}{1-2} \\
m & =\frac{-12}{-1} \\
\boldsymbol{m} & =\mathbf{1 2} \text { Ans }
\end{aligned}
$$

4. (b) (i) $y=x^{3}+x^{2}-5 x+3-\left(x^{3}+x^{2}-5 x+3\right)$
$y=x^{3}+x^{2}-5 x+3-x^{3}-x^{2}+5 x-3$
$y=0$
On the graph, when $y=0(x-$ axis $)$
$x=-3$ and $x=1$ Ans
(c) From the graph in the given bounds, we can make two trapeziums.

Hence to find the area, we find the total areas of these two trapeziums:
$A=\frac{1}{2}(\boldsymbol{a}+\boldsymbol{b}) \boldsymbol{h}$
$A=\frac{1}{2}(9+8) 1+\frac{1}{2}(8+3)$
$A=\frac{1}{2}(17)+\frac{1}{2}(11)$
$A=8.5+5.5$
$A=14$ Square units
(ii) similarly we have $y=5 x$ Use any points to draw the line $y=5 x$ and find the values of x where it meets the curve for example use the points in this table below

x	-1	0	1	5
y	-5	0	5	10

$$
\therefore x=-3.8, x=0.3 \text { and } x=2.4
$$

5.

TOPIC 14: LINEAR PROGRAMING

1.

2.

3.

4.

5.

TOPIC 15: STATISTICS

1. (a)

class	\boldsymbol{x}	x^{2}	f	$\boldsymbol{f x}$	$f x^{2}$
$10<x \leq 20$	15	225	2	30	450
$20<x \leq 30$	25	625	10	250	6250
$30<x \leq 40$	35	1225	15	525	18375
$40<x \leq 50$	45	2025	23	1035	46575
$50<x \leq 60$	55	3025	30	1650	90750
$60<x \leq 70$	65	4225	10	1650	42250
Totals			$\sum f=90$	$\sum f x=4140$	$\sum f x^{2}=204650$

Mean $\bar{x}=\frac{\Sigma f x}{\Sigma f}$

$$
\begin{aligned}
& =\frac{4140}{90} \\
& =46
\end{aligned}
$$

$$
\mathrm{SD}=\sqrt{\frac{\sum f x^{2}}{\Sigma f x}-(\bar{x})^{2}}
$$

$$
=\sqrt{\frac{204650}{90}-(46)^{2}}
$$

$$
=\sqrt{2273.888889-2116}
$$

$$
=\sqrt{157.8888889}
$$

SD = 12.57 Ans

Get your copy today and enjoy studying mathematics

(b)

2. (a)

\boldsymbol{x}	$\boldsymbol{x}^{\mathbf{2}}$	\boldsymbol{f}	$\boldsymbol{f} \boldsymbol{x}$	$\boldsymbol{f} \boldsymbol{x}^{\mathbf{2}}$
2	4	1	2	4
3	9	5	15	45
4	16	4	16	64
5	25	6	30	150
6	36	10	60	360
7	49	16	112	784
8	64	18	144	1152
		$\sum \boldsymbol{f}=\mathbf{6 0}$	$\sum \boldsymbol{f x}=\mathbf{3 7 9}$	$\sum \boldsymbol{f} \boldsymbol{x}^{\mathbf{2}=\mathbf{2 5 5 9}}$

$\operatorname{Mean}(\bar{x})=\frac{\sum f x}{\sum f}$
$=\frac{379}{60}$
$=6.32$

$$
\begin{aligned}
\text { SD } & =\sqrt{\frac{\sum f x}{\sum f}-(\bar{x})^{2}} \\
& =\sqrt{\frac{2559}{60}-(6.32)^{2}} \\
& =\sqrt{42.65-39.9424} \\
& =\sqrt{2.7076} \\
& =1.645478654 \\
& =\mathbf{1} .65 \text { Ans }
\end{aligned}
$$

Hard work need to be appreciated.

Get your own copy direct from the Authors and avoid Piracy
(b)

3. (a)

Class marks	\boldsymbol{x}	\boldsymbol{f}	$\boldsymbol{f} \boldsymbol{x}$	$(\boldsymbol{x}-\overline{\boldsymbol{x}})^{\mathbf{2}}$	$\boldsymbol{f}(\boldsymbol{x}-\overline{\boldsymbol{x}})^{\mathbf{2}}$
$0<x \leq 5$	2.5	13	32.5	12.25	159.25
$5<x \leq 10$	7.5	27	205.5	17.2225	465.0
$10<x \leq 15$	12.5	35	437.5	0.7225	25.288
$15<x \leq 20$	17.5	16	280	34.2225	547.58
$20<x \leq 25$	22.5	7	157.5	117.7225	824.058
$25<x \leq 30$	27.5	2	55	251.2225	502.445
		$\sum f=100$	$\sum f x=1168$		$\sum f(x-\bar{x})^{2}$

$$
\begin{aligned}
\overline{\boldsymbol{x}} & =\frac{\sum f x}{\Sigma f} \\
& =\frac{1165}{100} \\
& =\mathbf{1 1 . 6 5}
\end{aligned}
$$

$$
\mathrm{SD}=\sqrt{\frac{\sum f(x-\bar{x})^{2}}{\sum f}}
$$

$$
\mathrm{SD}=\sqrt{\frac{2523.621}{100}}
$$

$$
S D=\sqrt{25.23621}
$$

$$
\mathrm{SD}=5.023565467
$$

$$
\mathrm{SD}=5 \text { Ans }
$$

> Great works are done not by hardworking, but by persistence and perseverance
(b)

4. (a)

Class marks	Midpoints (x)	Frequency (f)	$f x$	x^{2}	$f x^{2}$
$25<x \leq 30$	27.5	5	137.5	756.25	3781.25
$30<x \leq 35$	32.5	4	130	1056.25	4225
$35<x \leq 40$	37.5	7	262.5	1406.25	9843.75
$40<x \leq 45$	42.5	11	467.5	1806.25	19868.75
$45<x \leq 50$	47.5	12	570	2256.25	27075
$55<x \leq 55$	52.5	8	420	2256.25	22050
$55<x \leq 60$	57.5	1	57.5	3306.25	3306.25
Totals		$\sum f=48$	$\sum f x=2045$		$\sum f x^{2}=90150$

$$
\begin{aligned}
& \text { Mean }(\bar{x})=\frac{\Sigma f x}{\Sigma f} \\
& =\frac{2045}{48} \\
& =42.6
\end{aligned} \begin{aligned}
\text { SD }=\sqrt{\left.\frac{\sum f \mathrm{fx}^{2}}{\Sigma f}-(\overline{\mathrm{x}})^{2}\right\}} \\
=\sqrt{\frac{90150}{48}-(42.6)^{2}} \\
=\sqrt{1878.125-1814.76} \\
=\sqrt{63.365} \\
=7.96 \mathrm{Ans}
\end{aligned}
$$

(b)

5. (a)

Class marks	\boldsymbol{x}	\boldsymbol{f}	$\boldsymbol{f} \boldsymbol{x}$	$\boldsymbol{x}^{\mathbf{2}}$	$\mathbf{f x}^{\mathbf{2}}$
$0<x \leq 10$	5	7	35	25	175
$10<x \leq 20$	15	22	330	225	4950
$20<x \leq 30$	25	28	700	625	17500
$30<x \leq 40$	35	23	805	1225	28175
$40<x \leq 50$	45	15	675	2025	30375
$50<x \leq 60$	55	5	275	15125	
		$\sum \boldsymbol{f}=\mathbf{1 0 0}$	$\sum \boldsymbol{f} \boldsymbol{x}=\mathbf{2 8 2 0}$		$\sum \boldsymbol{f} \boldsymbol{x}^{\mathbf{2}}=\mathbf{9 6 3 0 0}$

Mean, $\bar{x}=\frac{\Sigma f x}{\Sigma f}$

$$
=\frac{2820}{100}
$$

$$
=28.2
$$

$$
\therefore S D=\sqrt{\frac{\sum f x^{2}}{\sum f}-(\bar{x})^{2}}
$$

$$
\mathrm{SD}=\sqrt{\frac{96300}{100}-(28.2)^{2}}
$$

$$
\mathrm{SD}=\sqrt{963-795.24}
$$

$$
\mathrm{SD}=\sqrt{167.76}
$$

$$
\mathrm{SD}=12.95221989
$$

$$
\mathrm{SD}=13.95 \mathrm{Ans}
$$

(b)

TOPIC 16: TRANSFORMATION

1. (a) It is a clockwise rotation of 90° about the origin.
(b) It is an enlargement, centre $(0,0)$ and scale factor 2
(c) Let the matrix be $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then pick any two coordinates of P which corresponds to V and form four equations as follows:

$$
\begin{align*}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
2 & 4 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-4 & -8 \\
4 & 1
\end{array}\right) \\
& a+4 b=-4 \tag{i}\\
& a+b=-8 \tag{iv}\\
& 2 c+d=1 \tag{iii}\\
& 4 c+d=1
\end{align*}
$$

\qquad
\qquad
Solving these equations (i) and (ii) simultaneously, we have $a=-2$ and $b=0$
Similarly solving equations (iii) and (iv) we have $c=0$ and $d=1$
\therefore the required matrix is
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right)$
(d) To find the coordinates of S , we need multiply the given matrix by the coordinates of P .

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 2 & 4 \\
1 & 4 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc}
2+0 & 2+0 & 4+0 \\
-4+1 & -4+4 & -8+1
\end{array}\right) \\
& \left(\begin{array}{ccc}
\mathbf{2} & \mathbf{2} & \mathbf{4} \\
-\mathbf{3} & \mathbf{0} & -\mathbf{7}
\end{array}\right)
\end{aligned}
$$

There the coordinates of S are $(2,-3),(2,0)$ and $(4,-7)$

Your life is in your hands, to make of it what you choose
2.

3.

4.

5. (a) (i) To find the centre of enlargement, join any corresponding two points of the object and the image, the intersection point is the centre of enlargement.
\therefore the centre of enlargement is $(\mathbf{1}, \mathbf{2})$ Ans
(ii) Scale factor $=\frac{3.2}{1.6}=2$ Ans
(b) Let the matrix be $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}1 & 3 \\ 4 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 3 \\ 1 & 5\end{array}\right)$
$a+4 b=1 \quad$...............(i) $\quad c+4 d=1$
$3 a+4 b=3$ \qquad (ii) $3 c+4 d=5$ \qquad (iv)

Solving the equations (i) and (ii) simultaneously yields $a=1$ and $b=0$.
Similarly solving equations (iii) and (iv) simultaneously yields $c=2$ and $d=-\frac{1}{4}$
\therefore the required matrix is $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}\mathbf{1} & \mathbf{0} \\ \mathbf{2} & -\frac{1}{4}\end{array}\right)$ Ans
(c) Triangle $\mathbf{A B C}$ is mapped onto triangle $\mathbf{A}_{\mathbf{3}} \mathbf{B}_{\mathbf{3}} \mathbf{C}_{\mathbf{3}}$ by an anticlockwise rotation of 90° about $(0,0)$ or by a clockwise rotation of 270° about $(0,0)$.
(d) (i) Comparing the matrices $\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right)$, we have $k=-3$
\therefore the scale factor of this transformation is $\boldsymbol{k}=\mathbf{- 3}$ Ans
(ii) To find the coordinates of $\mathrm{A}_{4}, \mathrm{~B}_{4}$ and C_{4} (image) we need to multiply the given matrix with the coordinates of triangle ABC (object)

$$
\begin{aligned}
& \left(\begin{array}{cc}
-3 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 3 & 1 \\
4 & 4 & 5
\end{array}\right) \\
& \left(\begin{array}{ccc}
-3+0 & -9+0 & -3+0 \\
0+4 & 0+4 & 0+5
\end{array}\right) \\
& \quad\left(\begin{array}{ccc}
-3 & -9 & -3 \\
4 & 4 & 5
\end{array}\right)
\end{aligned}
$$

\therefore the coordinates of $\mathbf{A}_{\mathbf{4}}, \mathbf{B}_{4}$ and $\mathbf{C}_{\mathbf{4}}$ are $(-\mathbf{3}, \mathbf{4}),(-\mathbf{9}, 4)$ and $(-\mathbf{3}, 5)$ respectively

[^0]: Don't wait for samehady ta tell you that you can da it, just belieme in yourself that you can do it

