MATHEMATICS SYLLABLS D (4024/2) EXAMINATIDN QUESTIDNS FRDM

(2014-2017) WITH ANSWERS:

Mathematical Formulae

$$
\begin{gathered}
y=a x^{n} \text { then } \frac{d y}{d x}=n a x^{n-1} \\
\int a x^{n} d x=\frac{a x^{n+1}}{n+1}+c \\
\Delta \mathbf{A B C}: \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
\Delta \mathbf{A B C}: a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A \\
\text { Mean }=\bar{x}=\frac{\Sigma f x}{\Sigma f}, S D=\sqrt{\left\{\frac{\sum f(x-\bar{x})^{2}}{\Sigma f}\right\}}=\sqrt{\left\{\frac{\sum f x^{2}}{\Sigma f}-(\bar{x})^{2}\right\}} \\
\text { AP: } T_{n}=a+(n-1) d, \quad \text { GP: } T_{n}=a r^{n-1} \\
\text { AP: } \boldsymbol{S}_{\boldsymbol{n}}=\frac{n}{2}[2 a+(n-1) d], \text { GP: } \boldsymbol{S}_{\boldsymbol{n}}=\frac{\left(1-r^{n}\right)}{1-r}, \mathrm{r}<1
\end{gathered}
$$

Contents: Sets, Prabability, Sequences and Series, Pseuda cade 8 Flow charts, Vectors, Trigonometry, Mensuration, Earth Geometry and Statistics.

Compiled \& Solved by Kachama Dickson. C

Kachama Dickson C is a final Year student at the Copperbelt University (CBU) who is currently pursuing a bachelors of Science in Mathematics education (BSc.MA.Ed).To show his eligibility and competence in mathematics, he has produced many pamphlets for mathematics with this being one of his best pamphlets.

This pamphlet consists of final Examination questions from 2014-2017 for both School Certificate and General Certificate ordinary levels. Answers with all necessary working methods are shown at the end of questions.
"I believe, this pamphlet will be of great help to you even as you prepare for your final Examinations:"

CONTENTS

Topicpage1. Set s 1
2. Probability 4
3. Sequences \& Series 5
4. Pseudo Code \& Flow charts 6
5. Calculus 6
6. Vectors 9
7. Trigonometry 11
8. Mensuration 15
9. Earth Geometry 17
10. Statistics 20
11. Answers. 22

TOPIC 1: SETS

[2017 P2 NOVE, Q1 (b)]

1. A survey carried out at Kamulima Farming Block showed that 44 farmers planted maize, 32 panted sweet potatoes, 37 planted cassava, 14 planted both maize and sweet potatoes, 24 planted both sweet potatoes and cassava, 20 planted both maize and cassava, 9 planted all the three crops and 6 did not plant any of these crops.
(i) Illustrate this information on a Venn diagram.
(ii) How many farmers
(a) Where at this farming block,
(b) Planted maize only
(c) Planted two different crops

[2017 P2 J ULY, Q3 (b)]

2. The Venn diagram below shows tourist attractions visited by certain students in a certain week.

(i) Find the value of y if 7 students visited Mambilima Falls only.
(ii) How many students visited
(a) Victoria falls but not Gonya Falls,
(b) Two tourist attractions only,
(c) One tourist attraction only?

[2016 P2 NOV, Q2 (b)]

3. Of the 50 villagers who can tune in to Kambani Radio Station, 29 listen to news, 25 listen to sports, 22 listen to music, 11 listen to both news and sports, 9 listen to both sports and music, 12 listen to both news and music, 4 listen to all the three programmes and 2 do not listen to any programme.
(i) Draw a Venn diagram to illustrate this information.
(ii) How many villages
(a) Listen to music only,
(b) Listen to one type of programme only
(c) Listen to two types of programs only

[2015 P2 NOV, Q4]

4. The Venn diagram below shows the number of students who took Business (B), Human Resources (H), and community development(C) at Mafundisho College. 100 students took all these three courses.

(a) Find
(i) the value of x
(ii) the number of students who took Human Resources,
(iii) $\quad \mathrm{n}(\mathrm{B} \cap \mathrm{C}) \cap \mathrm{H}^{\prime}$
(iv) $\mathrm{n}(\mathrm{B} \cup \mathrm{C}) \cap \mathrm{H}^{\prime}$
(b) If a student is chosen at random, what is the probability that he took
(i) one course,
(ii) at least two course?

[2014 P2 NOV, Q5 (a)]

5. Tokhozani sports club offers Squash(S), Badminton (B) and Tennis (T).The Venn diagram shows choices of the 73 members of the club.

(i) Calculate the value of y
(ii) Find the number of member s who played Squash or tennis but not Badminton.
(iii) How many members played two different sports only?
(iv) Find the number of members who played one sport only.

TOPIC 2: PROBABILITY

[2017 P2 J ULY, Q3 (a)]

1. In a box of 10 bulbs, 3 are faulty. If two bulbs are drawn at random one after the other, find the probability that
(i) Both are good.
(ii) One is faulty and the other one is good.

[2017 P2 NOV, Q2 (a)]

2. A box of chalk contains 5 white, 4 blue and 3 yellow pieces of chalk. A piece of chalk is selected at random from the box and not replaced. A second piece of chalk is then selected.
(a) Draw a tree diagram to show all the possible outcomes.
(b) Find the probability of selecting pieces of chalk of the same colour.

[2016 P2 NOV, Q2 (b)]

3. A survey was carried out at certain hospital indicated that the probability that patient tested positive for malaria is 0.6 . What is the probability that two patients selected at random
(i) one tested negative while the other positive,
(ii) both patients tested negative.

[2014 P2 NOV, Q11 (b)]

4. Two pupils are to present a school at a Human Rights Conference. If the two are chosen at random from a group of 8 girls and 6 boys, calculate the probability that the two pupils picked
(i) are both girls,
(ii) at least one is a boy.

TOPIC 3: SEQUENCES AND SERIES

[GENERAL QUESTIONS 1-2]

1. For the sequence $25,22,19,16, \ldots$. Find
(a) Formula for the $n^{\text {th }}$ term
(b) Sum of the first 20 terms
2. The $6^{\text {th }}$ and the $13^{\text {th }}$ terms of an arithmetic progression are 17 and 38 respectively. Find
(a) the first term "a" and the common difference " d " and hence list the first 5 terms of this sequence,
(b) the general formula for the $\mathrm{n}^{\text {th }}$ term and the $19^{\text {th }}$ term,
(c) the sum of the first 40 terms of this sequence.
3. (a) for the sequence $11,13,15,17, \ldots$, find the $13^{\text {th }}$ term
(b) If the arithmetic mean of 5 and c is 11 , what is the value of c ?
(c) If $16, x, 6, y$ form an arithmetic progression, find the value of x and y

[2017 P2 J ULY, Q2 (b)]

4. The first three terms of a geometric progression are $6+n, 10+n$ and $15+n$. Find
(i) the value of n,
(ii) the common ratio,
(iii) the sum of the first 6 terms of this sequence.

[2017 P2 NOV, Q5 (b)]

5. For the geometric progression $20,5,1 \frac{1}{4}, \ldots$, find
(i) the common ratio,
(ii) the $\mathrm{n}^{\text {th }}$ term,
(iii) the sum of the first 8 terms.

[2016 P2 NOV, Q5 (a)]

6. The first three terms of a geometric progression are $x+1, x-3$ and $x-1$.
(i) the value of x,
(ii) the first term,
(iii) the sum to infinity.

TOPIC 4: PSEUDO CODE AND FLOW CHARTS

[2017 P1 NOV, Q20 (b)]

1. The diagram below is an incomplete flow chart to calculate the curved surface area, S of a cone with base radius r and slant height I. complete the flow chart below by writing appropriate statements in the blank symbols

[2017 P2 J ULY, Q6 (b)]

2. The diagram below is given in the form of a flow chart

Write a pseudo code corresponding to the flow chart program above

[2017 P2 NOV, Q6]

3. Study the flow chart below

Write a pseudo code corresponding to the flow chart program above
4. The program below is given in the form of a pseudo code.

Start
Enter radius
If radius < 0
Then display "error message" and re-enter positive radius Else enter height

If height < 0
Then display "error message" and re-enter positive height Else Volume $=\frac{1}{3} * \pi *$ square radius $*$ height

End if
Display volume
Stop
Draw the corresponding flowchart for the information given above.

TOPIC 5: CALCULUS

1. (a) Find the derivative of $y=2 x^{3}-2 x^{2}-3 x+1$ with respect to x
(b) Evaluate $\int_{2}^{5}\left(3 x^{2}+2\right) d x$
(c) Evaluate $\int_{-1}^{3}\left(3 x^{2}-2 x\right) d x$
2. Find the equation of the tangent to the curve $y=x^{2}-3 x-4$ at a point where $x=2$
3. Find the coordinates of the points on the curve $y=2 x^{3}-3 x^{2}-36 x-3$ where the gradient is zero.
4. The equation of the curve is $y=x^{3}-\frac{3}{2} x^{2}$. Find
(a) equation of the normal where $x=2$
(b) the coordinates of the stationary points
5. Find the equation of the tangent to the curve $y=x^{2}-2 x+3$ at the point $(3,0)$
6. A curve is such that $\frac{d y}{d x}=15 x^{2}-12 x$. Given that it passes through (1,3), find its equation.

[2017 P2 J ULY, Q6 (a)]

1. In the diagram below, OABC is a parallelogram in which $\overrightarrow{\mathrm{OA}}=\underline{a}$ and $\overrightarrow{O B}=2 \underline{b}$ OB and $A C$ intersect at D . E is the midpoint of $\mathrm{CD} . \mathrm{E}$ is the mid - point of CD .

Express in terms of \underline{a} and / or \underline{b}.
(i) $\overrightarrow{\mathrm{OB}}$,
(ii) $\overrightarrow{\mathrm{OE}}$
(iii) $\overrightarrow{\mathrm{CD}}$

[2017 P2 NOV, Q2 (a)]

2. In the diagram below, $\overrightarrow{O P}=2 p, \overrightarrow{O Q}=4 q$ and $P X: X Q=1: 2$

(i) Express in terms of p and / or q .
(a) $\overrightarrow{P Q}$
(b) $\overrightarrow{P X}$
(c) $\overrightarrow{\mathrm{OX}}$
(ii) Given that $\overrightarrow{\mathrm{CO}}=h \overrightarrow{\mathrm{OX}}$, show that $\overrightarrow{\mathrm{CQ}}=4\left(1-\frac{h}{3}\right) \underline{q}-\frac{4 h}{3} \mathrm{p}$.
3. In the diagram below, $O A B$ is a triangle in which $\overrightarrow{O A}=3 \underline{a}$ and $\overrightarrow{O B}=6 \underline{b}$.
$O C: C A=2: 3$ and $A D: D B=1: 2$. OD meets $C B$ at E.

(i) Express each of the following in terms of \underline{a} and / or \underline{b}
(a) $\overrightarrow{\mathrm{AB}}$
(b) $\overrightarrow{\mathrm{OD}}$
(c) $\overrightarrow{\mathrm{BC}}$
(ii) Given that $\overrightarrow{\mathrm{BE}}=h \overrightarrow{\mathrm{BC}}$, express $\overrightarrow{B E}$ in terms of h, \underline{a} and \underline{b}

[2015 P2 NOV, Q6]

4. In the diagram below, $\mathbf{O A B C}$ is a parallelogram in which $\overrightarrow{\boldsymbol{O A}}=\underline{a}$ and $\overrightarrow{\boldsymbol{O B}}=\underline{b}$. $\mathbf{C A}$ and $\mathbf{O B}$ meet at \mathbf{D} such that $\mathbf{O D}=\mathbf{D B} . \mathbf{O C}$ is produced to \mathbf{E}, such that $\mathbf{C E}=\frac{1}{2} \mathbf{O C}$.

Express each of the following in terms of \underline{a} and/ or \underline{b}
(i)
$\overrightarrow{O B}$
(ii) $\overrightarrow{\mathrm{AD}}$
(iii) $\overrightarrow{\mathrm{BE}}$

[2014 P2 NOV, Q6]

5. In the diagram, $\overrightarrow{O P}=2 \underline{p}$ and $\overrightarrow{O Q}=2 \underline{q}$. X is a point on $P Q$ such that $\frac{P X}{P Q}=\frac{2}{3}$

(i) Express in terms of p and/ or q
(a) $\overrightarrow{P Q}$
(b) $\overrightarrow{Q X}$
(ii) Given also that $\overrightarrow{\mathrm{OY}}=\mathrm{h} \overrightarrow{\mathrm{OX}}$, express $\overrightarrow{\mathrm{OY}}$ in terms of \underline{p}, \underline{q} and h

TOPIC 7: TRIGONOMETRY

[2017 P2 J ULY, Q 10]

1. (a) In Triangle PQR below, $Q R=36.5$, angle $P Q R=36^{\circ}$ and angle $Q P R=46^{\circ}$.

Calculate
(i) PQ
(ii) the area of triangle PQR
(iii) the shortest distance from R to PQ
(b) Solve the equation $\sin \theta=0.6792$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.

[2015 P2 NOV, Q7]

2. (a) The diagram below shows the Location of houses for a village Headman (H), his Secretary (S) and a Trustee (T). H is 1.3 km from S, T is 1.9 km from H and angle $\mathrm{THS}=130^{\circ}$

Calculate

(i) the area of triangle THS
(ii) the distance TS
(iii) the shortest distance from H to TS
(b) Find the angle between 0° and 90° which satisfies the equation $\cos \theta=\frac{2}{3}$.
3. (a) The diagram below shows the location of three secondary schools, namely Mufulira (M), Kantanshi (K) and Ipusukilo (I) in Mufulira district. M is 5 km from K , I is 3 km from K and MKI is 110°

Calculate

(i) MI
(ii) the area of triangle MKI
(iii) the shortest distance from K to MI
(b) Solve the equation $\tan \theta=0.7$ for $0^{\circ} \leq \theta \leq 180^{\circ}$.

[2015 P2 NOV, Q10 (a)]

4. (a) In Votani Constituency, A, B and C are polling stations as shown on the diagram

Calculate
(i) angle BAC
(ii) angle ACB,
(iii) the area of triangle ABC correct to 1 decimal place,
(iv) the shortest distance from \mathbf{C} to $\mathbf{A B}$
(b) Solve the equation $\cos \theta=0.5$ for $0^{\circ} \leq \theta \leq 360^{\circ}$

[2014 P2 NOV, Q7 (a)]

5. Positions of Kabwela (K), Chopa (c) and Muzi (M) are as shown in this diagram below, Chopa is 78 km from Kabwela and Muzi is 123km from Kabwela.

(i) Given that $\mathrm{C} \widehat{\mathrm{K}} \mathrm{M}=81^{\circ}$, calculate the area of triangle CMK .
(ii) Calculate the distance CM
(iii) A company has been contracted to construct a road from Muzi (M) to Chopa (C). Find the total cost of constructing this road, if the company charges K21500.00 per kilometer.

TOPIC 8: MENSURATION

[2017 P2 J ULY, Q 12 (a)]

1. The figure below is a cone $A B C$ form which $B C X Y$ remained after the small cone $A X Y$ was cut of [Take $\pi=3.142$]

Given that $E X=4 \mathrm{~cm}, \mathrm{DB}=12 \mathrm{~cm}$ and $\mathrm{DE}=15 \mathrm{~cm}$, calculate
(i) the height $A E$, of the smaller con AXY.
(ii) the volume of XBCY , the shape that remained.

[2017 P2 NOV, Q4 (b)]

2. The figure below is a frustum of a cone. The base diameter and top diameter are 42 cm and 14 cm respectively, while the height is 20 cm . (Take $\boldsymbol{\pi}=\mathbf{3 . 1 4 2}$)

Calculate its volume.
[2016 P2 NOV, Q9 (b/c)]
3. (a) The cross section of a rectangular tank measures 1.2 m by 0.9 . if it contains fuel to a depth of 10 m , find the number of litres of fuel in the tank. ($1 \mathrm{~m}^{3}=1000$ litres)
(b) A cone has a perpendicular height of 12 cm and slant height of 13 cm , calculate its total surface area. (Take $\pi=3.142$)

[2015 P2 NOV, Q11 (b)]

4. A cylindrical water tank at Mwaiseni Lodge has diameter of 200 cm and height of 250 cm as shown below

Taking π to be 3.142, find
(i) The total surface area of the tank if it is closed,
(ii) The number of litres of water the tank can hold.

[2014 P2 NOV, Q9 (a)]

5. A pattern on a chitenge material consists of three circles as shown in the diagram below. $A C$ is the diameter of the bigger circle.

Given that the diameter of each of the small circles is 20 cm and taking $\pi=3.142$, calculate the
(i) total perimeter of the two small circles
(ii) area of the shaded part

TOPIC 9: EARTH GEOMETRY

[2017 P2 J ULY, Q12 (b)]

1. $\mathbf{P}\left(80^{\circ} \mathrm{N}, 10^{\circ} \mathrm{E}\right), \mathbf{Q}\left(80^{\circ} \mathrm{N}, 70^{\circ} \mathrm{E}\right), \mathbf{R}\left(85^{\circ} \mathrm{S}, 70^{\circ} \mathrm{E}\right)$ and $\mathbf{S}\left(85^{\circ} \mathrm{S}, 10^{\circ} \mathrm{E}\right)$ are the points on the surface of the earth.
(i) Show the points on a clearly labeled sketch of the surface of the earth
(ii) Find in nautical miles
(a) The distance QR along the longitude,
(b) The circumference of latitude $85^{\circ} \mathrm{S}$.
[Take $\pi=3.142$ and $R=3437 \mathrm{~nm}$]

[2017 P2 NOV, Q9 (a)]

2. W, X, Y and Z are four points on the surface of the earth as shown in the diagram below. (Take $\pi=3.142$ and $R=3437$)

(i) Calculate the difference in latitudes between W and Y .
(ii) Calculate the distance in nautical miles between
(a) X and Z along the longitudes $105^{\circ} \mathrm{E}$
(b) Y and Z along the circle of latitude $30^{\circ} \mathrm{S}$

[2015 P2 NOV, Q 9(a)]

3. The points A, B, C and D are on the surface of the earth.
(Take $\pi=3.142$ and $R=3437 \mathrm{~nm}$)

(i) Find the difference in latitude between points C and B
(ii) Calculate the length of the circle of latitude $50^{\circ} \mathrm{N}$ in nautical miles
(iii) Find the distance AD in nautical miles

[2015 P2 NOV, Q11 (a)]

4. $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} are points on the surface of the earth as shown in the diagram below.

(i) Using latitudes and longitudes, write the positions of points A and B.
(ii) Find the difference in longitudes between points \mathbf{C} and \mathbf{D}
(iii) Calculate the distance CD in nautical miles [$\pi=3.142$ and $\mathrm{R}=3437 \mathrm{~nm}$].
(iv) Given that the local time at \mathbf{D} is 1305 hours, find the time at \mathbf{C}

[2014 P2 NOV, Q9 (b)]

5. The diagram below shows a model of the earth. The points C and D are on the same longitude. The latitudes of C and D are $45^{\circ} \mathrm{N}$ and $55^{\circ} \mathrm{S}$ respectively.
(Take $\pi=3.142$ and $R=3437 \mathrm{~nm}$)

(i) Write the position of the point C
(ii) Calculate the difference in latitude between C and D .
(iii) Find the distance CD in nautical miles.
(iv) Calculate the circumference of the latitude $45^{\circ} \mathrm{N}$ in nautical miles.

TOPIC 10: STATISTICS (PART A)

[2017 P2 J ULY, Q8]

1. The frequency table below shows the number of copies of newspapers allocated to 48 newspaper vendors.

Number of copies	$25<x \leq 30$	$30<x \leq 35$	$35<x \leq 40$	$40<x \leq 45$	$45<x \leq 50$	$50<x \leq 55$	$55<x \leq 60$
Number of vendors	5	4	7	11	12	8	1

Calculate the standard deviation.

[2017 P2 NOV, Q8]

2. The table below shows the amount of money spent by 100 learners at school on a particular day.

Amount in Kwacha	$0<x \leq 5$	$5<x \leq 10$	$0<x \leq 15$	$15<x \leq 20$	$20<x \leq 25$	$25<x \leq 30$
Frequency	13	27	35	16	7	2

Calculate the standard deviation.

[2016 P2 NOV, Q7]

3. The ages of people living at Pamodzi Village are recorded in the frequency table below.

Ages	$0<x \leq 10$	$10<x \leq 10$	$20<x \leq 30$	$30<x \leq 40$	$40<x \leq 50$	$50<x \leq 60$
Number of people	7	22	28	23	15	5

Calculate the standard deviation

[2015 P2 NOV, Q9]

4. On a particular day, a tuck shop owner recorded the expenditure of 350 boys and the results were as shown in the table below.

Amount (K)	$10<x \leq$ 20	$20<$ $x \leq 30$	$30<x$ ≤ 40	$40<x$ ≤ 50	$50<x$ ≤ 60	$60<x$ ≤ 70	$70<x$ ≤ 80	$80<$ $x \leq 90$	$90<$ $x \leq$ 100
No. of Boys	20	50	55	70	60	45	35	10	5

Calculate the mean amount of money spent

END OF QUESTIONS

ANSWERS TO THE QUESTIONS

TOPIC 1 SOLUTION: SETS

1.

(i) Hint: To illustrate the information on the Venn diagram, start by filling the intersection of all the three sets (9) and followed by the intersection of two sets.

(ii) (a) Total number of farmers $=19+5+3+9+11+15+2+6=70$ farmers
(b) Maize only $=19$ farmers
(c) Two different crops $=11+5+15=31$.
2. (i) $2 y+1=7 \rightarrow 2 y=7-1 \rightarrow 2 y=6 \rightarrow y=3$
(ii (a) $6+2=8$
(b) $4+1+2=7$
(b) $6+2(3)+1+8=21$
3. (i) Total $=50$

Hint: start with the intersection of all the three sets, followed by the intersection of any of the two sets

(ii)
(a) Music only=5 (b) One type of programme only $=5+9+10=\mathbf{2 4}$
(c) Two types of programmes only $=8+7+5=20$
4. (a) (i) $15+15+10+10+x+15+5=100$ $70+x=100$
$\boldsymbol{x}=\mathbf{3 0}$
(ii) Human Resource $=10+10+15+5=40$
(iii) $n(B \cap C) n^{\prime}$ $(B \cap C)=\{15,10\}$

$$
H^{\prime}=\{15,15,30\}
$$

(iv) $n(B \cup C) \mathrm{nH}^{\prime}$
$(B \cup C)=\{15,30,10,5\}$
$H^{\prime}=\{15,15,30\}$

$$
\therefore \mathrm{n}(\mathrm{~B} \cap \mathrm{C}) \mathrm{nH}^{\prime}=15 \quad \therefore \mathrm{n}(\mathrm{BUC}) \mathrm{nH}^{\prime}=15+30=45 .
$$

(b) (i) P (one course) $=\frac{\text { Totat number of those who took one course }}{\text { Total number of all students }}$

$$
=\frac{15+15+30}{100}=\frac{60}{100}=\frac{3}{3}
$$

(ii) $\mathrm{P}($ at least two courses $)=\frac{10+10+5+15}{100}=\frac{40}{100}=\frac{2}{5}$
5. (i) $y+2 y+4+20+5+10+13=73$ (ii) played S or T but not $\mathrm{B}=20+4+2(7)=\mathbf{3 8}$

$$
\begin{array}{ll}
3 y+52=73 & \text { (iii) Two different sports }=4+10+7=21 \\
3 y=21 & \text { (iv) played one sport only }=14+13+20=47 \\
y=7 &
\end{array}
$$

TOPIC 2 SOLUTIONS: PROBABILITY

1. Faulty $=3$ and good $=10-3=7$

Use a tree diagram

(i) $\quad P($ Both good $)=P(G, G)=\left(\frac{7}{10} \times \frac{6}{9}\right)=\frac{56}{90}=\frac{7}{15}$ Ans
(ii) $\quad P$ (one is faulty and the one is good) $=P(G, F)+P(F, G)$

$$
\begin{aligned}
& =\left(\frac{7}{10} \times \frac{3}{9}\right)+\left(\frac{3}{10} \times \frac{7}{9}\right) \\
& =\frac{21}{90}+\frac{21}{90}=\frac{42}{90}=\frac{7}{15}
\end{aligned}
$$

2. (a) Total $5+4+3=12$

WW
WB
WY
BW
BB
$B Y$
$Y W$
$Y B$
(b) $P($ Same colour $)=P(W W)+P(B B)+(Y Y)$

$$
=\left(\frac{5}{12} \times \frac{4}{11}\right)+\left(\frac{4}{12} \times \frac{3}{11}\right)+\left(\frac{3}{12} \times \frac{2}{11}\right)=\frac{20}{132}+\frac{12}{132}+\frac{6}{132}=\frac{38}{132}=\frac{\mathbf{1 9}}{69}
$$

3. (i) $\mathrm{P}(+)=0.6$ and $\mathrm{P}(-)=1-0.6=0.4$
$P($ one $(-)$ and the other $(+))=(0.6 \times 0.4)+(0.4 \times 0.6)=0.24+0.24=\mathbf{0 . 4 8}$
(ii) $P($ Both negative $)=(0.4 \times 0.4)=0.16$ or $\frac{16}{100}=\frac{4}{25}$
4. Total $=8+6=14$: Hint, use a tree diagram for easy calculation of probabilities.

(i) $\quad \mathrm{P}($ Both girls $)=\left(\frac{8}{14} \times \frac{7}{13}\right)=\frac{56}{182}=\frac{56}{182}$
(ii) P (at least one is a boy) $=P(B B)+P(B G)+P(G B)$

$$
\begin{aligned}
& =\left(\frac{6}{14} \times \frac{5}{13}\right)+\left(\frac{6}{14} \times \frac{8}{13}\right)+\left(\frac{8}{14} \times \frac{6}{13}\right) \\
& =\frac{30}{182}+\frac{48}{182}+\frac{48}{182} \\
& =\frac{126}{182}=\frac{9}{13}
\end{aligned}
$$

TOPIC 3 SOLUTIONS: SEQUENCES AND SERIES

1. (a) $a=25, d=T_{2}-T_{1}=22-25=-3$

$$
\begin{aligned}
& \mathbf{T}_{\mathbf{n}}=\mathbf{a}+(-\mathbf{1}) \mathbf{d} \\
& \mathbf{T}_{\mathbf{n}}=25+(\mathrm{n}-1)-3 \\
& \mathrm{~T}_{\mathrm{n}}=25-3 n+3 \\
\therefore & \boldsymbol{T}_{\boldsymbol{n}}=\mathbf{2 8}-\mathbf{3 n}
\end{aligned}
$$

2. (a) $T_{n}=a+(n-1) d$
$\mathrm{T}_{6}=\mathrm{a}+(6-1) \mathrm{d}$
$17=a+5 d$
$a=17-5 d$ \qquad Equation (1)
(b) $\mathbf{S}_{\mathbf{n}}=\frac{\mathbf{n}}{\mathbf{2}}[\mathbf{2 a}+(\mathbf{n}-\mathbf{1}) \mathrm{d}]$
$S_{20}=\frac{20}{2}[2(25)+(20-1)-3]$
$\mathrm{S}_{20}=10[50+(-19)-3]$
$\mathrm{S}_{20}=10(50-57)$
$\therefore S_{20}=-70$
$\mathrm{T}_{13}=\mathrm{a}+(13-1) \mathrm{d}$
$38=a+12 d$--------------Equation (2)
Substitute a by $17-5 d$ in (2) yields
$17-5 d+12 d=38$
$7 d=21$
$\boldsymbol{d}=3$ and $a=17-5(3)=2$
\therefore the required AP the first five terms are; $\mathbf{2}, \mathbf{5}, \mathbf{8}, \mathbf{1 1}, \mathbf{1 4}, \ldots$
(b) $T_{n}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$

$$
\begin{gathered}
=2+(n-1) 3 \\
=2+3 n-3 \\
\therefore T_{n} \quad=3 n-1
\end{gathered}
$$

(c) $S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{aligned}
S_{40} & =\frac{40}{2}[2(2)+(40-1) 3] \\
S_{40} & =20[4+(39) 3] \\
S_{40} & =20(121) \\
\therefore S_{40} & =\mathbf{2 4 2 0}
\end{aligned}
$$

3. (a) $a=11, d=13-11=2$

$$
\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}
$$

$$
\mathrm{T}_{13}=11+(13-1) 2
$$

$$
=11+24
$$

$\therefore \boldsymbol{T}_{13}=35$
(c) $16, x, 6, y$
x is the arithmetic mean of 16 and 6
$\therefore x=\frac{16+6}{2}=\frac{22}{2}=11$
4. (i) to find n, we use the common ratio formula

That is $\mathrm{r}=\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\cdots \frac{T_{n}}{T_{n-1}}$
$\frac{10+n}{6+n}=\frac{15+n}{10+n}$
$(10+n)(10+n)=(6+n)(15+n)$
$100+20 \mathrm{n}+n^{2}=90+21 \mathrm{n}+n^{2}$
$100-90=21 n-20 n$
$10=\mathrm{n}$
$\therefore n=10$
The GP is: $16,20,25 \ldots$
(ii) $\mathbf{r}=\frac{20}{16}=\frac{5}{4}$ or $\mathbf{1 . 2 5}$

The $19^{\text {th }}$ term $=T_{19}=3 n-1$
$\mathrm{T}_{19}=3(19)-1$
$\mathrm{T}_{19}=57-1$
$\therefore \boldsymbol{T}_{19}=\mathbf{5 6}$
(b) $\mathrm{b}=\frac{a+c}{2}$

$$
\begin{aligned}
& 11=\frac{5+c}{2} \\
& 5+c=22 \\
& c=22-5 \\
& c=17
\end{aligned}
$$

The first three terms are $16,11,6$. Thus $d=-5$

$$
\therefore y=6+(-5)=1
$$

$$
\begin{aligned}
\text { (iii) } \quad S_{n} & =\frac{a\left(r^{n}-1\right)}{r-1} \quad \text { for } r>1 \\
S_{6} & =\frac{16\left((1.25)^{6}-1\right)}{1.25-1} \\
S_{6} & =\frac{16(3.814697266-1)}{0.25} \\
S_{6} & =\frac{16(2.814697266)}{0.25} \\
S_{6} & =\frac{45.03515625}{0.25} \\
S_{n} & =180.140625 \\
\therefore \mathrm{~S}_{6} \quad & \approx \mathbf{1 8 0}
\end{aligned}
$$

5. (i) $r=\frac{5}{20}=\frac{1}{4}=0.25$
(ii) $T_{n}=a r^{n-1}$

$$
\begin{aligned}
T_{n} & =20\left(\frac{1}{4}\right)^{n-1} \\
T_{n} & =20 \frac{1^{n-1}}{4^{n-1}} \\
\therefore \boldsymbol{T}_{\boldsymbol{n}} & =\frac{20}{4^{n-1}}
\end{aligned}
$$

(iii) $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad$ for $r<1$

$$
S_{8}=\frac{\begin{array}{c}
1-r \\
20\left(1-(0.25)^{8}\right)
\end{array}}{1-0.25}
$$

$$
S_{8}=\frac{20(1-0.00001558906)}{0.75}
$$

$$
S_{8}=\frac{20(0.9999847412)}{0.75}
$$

$$
S_{8}=26.66625977 \approx 27.7
$$

6. (i) We know that $\mathrm{r}=\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\cdots \frac{T_{n}}{T_{n-1}}$

$$
\begin{aligned}
& \frac{x-3}{x+1}=\frac{x-1}{x-3} \\
& (x-3)(x-3)=(x-1)(x+1) \\
& x^{2}-6 x+9=x^{2}-1 \\
& -6 x=-1-9 \\
& -6 x=-10 \\
& x=\frac{10}{6}=\frac{5}{3}
\end{aligned}
$$

Hence the GP is; $\frac{5}{3}+1 \cdot \frac{5}{3}-3, \frac{5}{3}-1 \ldots \ldots$.

$$
\frac{8}{3}, \frac{-4}{3}, \frac{2}{3}, \ldots
$$

(ii) the first term " a " $=\frac{8}{3}$
(iii) $S_{\infty}=\frac{a}{1-r}$
$S_{\infty}=\frac{8 / 3}{1-\left(-\frac{1}{2}\right)}$
$S_{\infty}=\frac{8 / 3}{\frac{3}{2}}$
$S_{\infty}=\frac{8}{3} \div \frac{3}{2}$
$S_{\infty}=\frac{8}{3} \times \frac{2}{3}$
$\therefore S_{\infty}=\frac{16}{9}$

TOPIC 4 SOLUTION: PSEUDO CODE \& FLOW CHARTS

1.

2. Start

Enter a and r
If $\mathrm{r}<1$
Then display "error message "and re-enter positive r
Else sum to infinity $=\frac{a}{1-r}$
End if
Display sum to infinity
Stop
3. Start

Enter radius
If radius <0
Then display "error message "and re-enter positive radius
Else Area $=\frac{1}{2} * r * r * \sin \theta$
End if
Display Area
Stop
4.

TOPIC 5 SOLUTIONS: CALCULUS

1. (a) $\frac{d y}{d x}=(3) 2 x^{3-1}-(2) 2 x^{2-1}-(1) 3 x^{1-1}$

$$
\frac{d y}{d x}=6 x^{2}-4 x-3
$$

(c) $\int_{-1}^{3}\left(3 x^{2}-2 x\right) d x$
$=\left[\frac{3 x^{3}}{3}-\frac{2 x^{2}}{2}\right]_{-1}^{3}$
(b) $\int_{2}^{3}\left(3 x^{2}+2\right) d x$

$$
\begin{aligned}
& {\left[\frac{3 x^{3+1}}{2+1}+\frac{2 x^{0+1}}{0+1}\right]_{2}^{3}} \\
& =\left[\frac{3 x^{3}}{3}+\frac{2 x^{2}}{1}\right]_{2}^{3} \\
& =\left[x^{3}-2 x\right]_{2}^{3} \\
& \quad=\left((3)^{3}+2(3)\right)-\left(2^{2}+2(2)\right. \\
& \quad=(26+6)-(8+4 \\
& \quad=\mathbf{2 1}
\end{aligned}
$$

$=\left[x^{3}-x^{2}\right]_{-1}^{3}$
$=\left[(3)^{3}-(3)^{2}\right]-\left[(-1)^{3}-(-1)^{2}\right]$
$=(29-9)-(-1-1)$
$=18-(-2)$
$=18+2$
$=20$
2. $m=\frac{d y}{d x}=2 x-3$ at $x=2$
$m=2(2)-3=1$
$y-y_{1}=m\left(x-x_{1}\right)$ passes through $(2,-6)$
$y-(-6)=1(x-2)$
$y+6=x-2$
$\boldsymbol{y}=\boldsymbol{x}-8$
3. $y=2 x^{3}-3 x^{2}-36 x-3$
$\frac{d y}{d x}=6 x^{2}-6 x-36$
$0=6 x^{2}-6 x-36$ dividing through by 6
$x^{2}-x-6=0$
$(x+2)(x-3)=0$
when $x=-2$
$x=-2$ or $x=3$
$y=2(-2)^{3}-3(-2)^{2}-36(-2)-3$
$y=-16-12+72-3$
$\mathrm{y}=41$
when $x=3$
\therefore the coordinates on curve are $(-2,41)$ and $(\mathbf{3},-\mathbf{8 4})$
4. $y=x^{3}-\frac{3}{2} x^{2}$
$\frac{d y}{d x}=3 x^{2}-3 x=3(2)^{2}-3(2)=6$
$\therefore m_{1}=6$ which is the gradient of the curve
we know that tangent is perpendicular to the curve, $m_{1} m_{2}=-1$, at $x=2, \mathrm{y}=2$
$m_{2}=-\frac{1}{6}$ Which is the gradient of the normal?
$y-y_{1}=m_{2}\left(x-x_{1}\right) \quad(2,2)$
$y-2=-\frac{1}{6}(x-2)$
$y=-\frac{1}{6} x+\frac{1}{3}+2$
$y=-\frac{1}{6} x+\frac{7}{3}$
at the stationary points, $\frac{d y}{d x}=0$

$$
\begin{aligned}
& 3 x^{2}-3 x=0 \\
& 3 x(x-1)=0 \\
& x=0 \text { or } x=1
\end{aligned}
$$

$$
\text { for } x=0
$$

$$
y=(0)^{3}-\frac{3}{2}(0)^{2}=0
$$

for $x=1$
$\mathrm{y}=(1)^{3}-\frac{3}{2}(1)^{2}=-\frac{1}{2}$
therefore the stationary points are;
$(0,0)$ and $\left(1,-\frac{1}{2}\right)$
5. $\mathrm{m}=\frac{d y}{d x}=2 x-2$ at $x=3, m=4$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-0=4(x-3)$
$y=4 x-12$
6. $\frac{d y}{d x}=15 x^{2}-12 x$ at $\mathrm{x}=1, \frac{d y}{d x}=m=3$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-3=3(x-1)$
$y=3 x-3+3$
$\boldsymbol{y}=3 \boldsymbol{x}$

TOPIC 6 SOLUTIONS: VECTORS

1. (i) $\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}$

$$
\overrightarrow{\mathrm{OB}}=\underline{\mathbf{a}}+\underline{\mathbf{b}}
$$

(ii) To find $\overrightarrow{\mathrm{OE}}$, first find $\overrightarrow{\mathrm{CA}}$ and $\overrightarrow{\mathrm{CD}}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{CO}}+\overrightarrow{\mathrm{OA}} \\
& \overrightarrow{\mathrm{CA}}=-2 \underline{\mathrm{~b}}+\mathrm{a} \\
& \overrightarrow{\mathrm{CD}}=\frac{1}{2} \overrightarrow{\mathrm{CA}} \\
& \overrightarrow{\mathrm{CD}}=\frac{1}{2}(-2 \underline{\mathrm{~b}}+\underline{\mathrm{a}}) \\
& \overrightarrow{\mathrm{CD}}=-\underline{\mathrm{b}}+\frac{1}{2} \underline{\mathrm{a}}
\end{aligned}
$$

$\therefore \overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{CE}}$

$$
\overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{OC}}+\frac{1}{2} \overrightarrow{\mathrm{CD}}
$$

$$
\overrightarrow{\mathrm{OE}}=2 \mathrm{~b}+\frac{1}{2}\left(-\mathrm{b}+\frac{1}{2} \underline{\mathrm{a}}\right)
$$

$$
\overrightarrow{\mathrm{OE}}=2 \mathrm{~b}-\frac{1}{2} \mathrm{~b}+\frac{1}{4} \underline{\mathrm{a}}
$$

$$
\overrightarrow{\mathrm{OE}}=\frac{4 \mathrm{~b}-\mathrm{b}}{2}+\frac{1}{4} \underline{\mathrm{a}}
$$

$$
\overrightarrow{\mathrm{OE}}=\frac{3}{2} \mathrm{~b}+\frac{1}{4} \underline{\mathrm{a}}
$$

$$
\overrightarrow{\mathrm{OE}}=\frac{1}{4}(6 \underline{\mathrm{~b}}+\underline{\mathrm{a}})
$$

2. (i) (a) $\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{PO}}+\overrightarrow{\mathrm{OQ}}$

$$
\overrightarrow{\mathrm{PQ}}=-2 \underline{p}+4 \underline{q}
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{OC}}=\mathrm{h} \overrightarrow{\mathrm{OX}} \\
& \overrightarrow{\mathrm{OC}}=\mathrm{h}\left(\frac{4 \mathrm{p}}{3}+\frac{4 q}{3}\right) \\
& \overrightarrow{\mathrm{OC}}=\frac{4 \mathrm{~h}}{3} \mathrm{p}+\frac{4 \mathrm{~h}}{3} \underline{q} \\
& \therefore \quad \overrightarrow{\mathrm{CQ}}=\overrightarrow{\mathrm{CO}}+\overrightarrow{\mathrm{OQ}} \\
& \overrightarrow{\mathrm{CQ}}=-\left(\frac{4 h}{3} \underline{p}+\frac{4 h}{3} q\right)+4 \underline{4} \\
& \overrightarrow{\mathrm{CQ}}=4 q-\frac{4 h}{3} q-\frac{4 h}{3} p \\
& \overrightarrow{\mathrm{CQ}}=4\left(1-\frac{h}{3}\right) q-\frac{4 h}{3} p
\end{aligned}
$$

(b) $\overrightarrow{\mathrm{PX}}=\frac{1}{3} \overrightarrow{\mathrm{PQ}}$

$$
\overrightarrow{\mathrm{PX}} \quad=\frac{1}{3}(4 \mathrm{q}-\mathrm{p})
$$

(c) $\overrightarrow{\mathrm{OX}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PX}}$

$$
\begin{aligned}
& \overrightarrow{O X}=2 p+\frac{4}{3} q-\frac{2}{3} p \\
& \overrightarrow{O X}=2 p-\frac{2}{3} p-\frac{4}{3} q \\
& \overrightarrow{\mathrm{OX}}=\frac{6 p-2 p}{3}-\frac{4 q}{3} \\
& \overrightarrow{\mathrm{OX}}=\frac{4}{3} p-\frac{4}{3} q
\end{aligned}
$$

(iii) $\quad \overrightarrow{\mathrm{CD}}=\frac{1}{2} \overrightarrow{\mathrm{CA}}$

$$
\overrightarrow{\mathrm{CD}}=\frac{1}{2}(-2 \underline{\mathrm{~b}}+\underline{a})
$$

$$
\overrightarrow{C D}=-\mathrm{b}+\frac{1}{2} \mathrm{a}
$$

$$
\overrightarrow{C D}=\frac{1}{2} \mathbf{a}-\underline{b}
$$

$$
\therefore \overrightarrow{\mathbf{O X}}=\frac{4}{3}(\mathbf{p}-\mathbf{q})
$$

3.

$\overrightarrow{\mathrm{AB}}=-3 \mathrm{a}+6 \mathrm{~b}$
$\overrightarrow{\mathrm{AB}}=6 \underline{\mathrm{~b}}-3 \underline{a}$
$\therefore \overrightarrow{\mathrm{AB}}=3(2 \underline{b}-\underline{a})$
(b) $\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AD}}$
$\overrightarrow{O D}=\overrightarrow{O A}+\frac{1}{3} \overrightarrow{A B}$
$\overrightarrow{\mathrm{OD}}=3 \mathrm{a}+\frac{1}{3}(6 \underline{\mathrm{~b}}-3 \underline{\mathrm{a}})$
$\overrightarrow{\mathrm{OD}}=3 \underline{a}+3 \underline{b}-\underline{\mathrm{a}}$
$\overrightarrow{\mathbf{O D}}=2 \underline{a}+2 \underline{b}=2(\underline{a}+\underline{b})$
(c) $\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{BO}}+\overrightarrow{\mathrm{OC}}$ $\overrightarrow{\mathrm{BC}}=\overrightarrow{-\mathrm{OB}}+\frac{2}{5} \overrightarrow{\mathrm{OA}}$ $\overrightarrow{\mathrm{BC}}=-6 \underline{\mathrm{~b}}+\frac{2}{5}(3 \underline{a})$ $\overrightarrow{\mathrm{BC}}=-6 \mathrm{~b}+\frac{6 \mathrm{a}}{5}$ $\overrightarrow{\mathrm{BC}}=\frac{6}{5} \underline{\mathbf{a}}+6 \underline{\mathbf{b}}$
(ii) $\overrightarrow{\mathrm{BE}}=\mathrm{h} \overrightarrow{\mathrm{BC}}$
$\overrightarrow{\mathrm{BE}}=\mathrm{h}\left(\frac{6}{5} \underline{a}-6 \underline{b}\right)$
$\overrightarrow{\mathbf{B E}}=\mathbf{~} \mathbf{h}\left(\frac{1}{5} \underline{a}-\underline{b}\right)$

$$
\overrightarrow{\mathrm{BE}}=\mathbf{6 h}\left(\frac{1}{5} \underline{a}-\underline{b}\right)
$$

4. (i) $\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}$ $\overrightarrow{O B}=\underline{\mathbf{a}}+\underline{\mathbf{b}}$
(ii) $\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OD}}$
$\overrightarrow{\mathrm{AD}}=-\overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{OB}}$
$\overrightarrow{\mathrm{AD}}=-\mathrm{a}+\frac{1}{2} \underline{\mathrm{a}}+\frac{1}{2} \underline{\mathrm{~b}}$
$\overrightarrow{\mathrm{AD}}=\frac{-2 \mathrm{a}+\mathrm{a}}{2}+\frac{\mathrm{b}}{2}$
$\overrightarrow{\mathrm{AD}}=-\frac{1}{2} \underline{\mathrm{a}}+\frac{1}{2} \underline{\mathrm{~b}}$
$\overrightarrow{\mathrm{AD}}=-\frac{1}{2}(\underline{a}-\underline{b})$
5. (i) (a) $\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{PO}}+\overrightarrow{\mathrm{OQ}}$
$\overrightarrow{P Q}=-2 p+2 q$
$\overrightarrow{P Q}=2 q-2 p$
(ii) $\overrightarrow{\mathrm{OY}}=\mathrm{h} \overrightarrow{\mathrm{OX}}$
$\therefore \overrightarrow{\mathrm{OY}}=\mathrm{h}\left(\frac{14}{5} \mathrm{q}-{ }_{5}^{4} \mathrm{p}\right)$
$\overrightarrow{O X}=\overrightarrow{O Q}+\overrightarrow{Q X}$
$\overrightarrow{\mathrm{OY}}=\frac{14 \mathrm{~h}}{5} \mathrm{q}-\frac{4 \mathrm{~h}}{5} \mathrm{p}$
$\overrightarrow{\mathrm{OX}}=2 \mathrm{q}+\frac{4 \mathrm{q}}{5}-\frac{4 \mathrm{p}}{5}$
$\overrightarrow{\mathrm{OY}}=\frac{1}{5}(14 \mathrm{hq}-4 \mathrm{~h} p)$
(b) $\overrightarrow{Q X}=\frac{2}{5} \overrightarrow{P Q}$
$\overrightarrow{\mathrm{OX}}=\frac{10 q+4 \mathrm{q}}{5}-\frac{4 \mathrm{p}}{5}$
$\overrightarrow{\mathbf{Q X}}=\frac{2}{5}(2 q-2 p)$
$\overrightarrow{\mathrm{OX}}=\frac{14}{5} \mathrm{q}-\frac{4}{5} \mathrm{p}$
$\overrightarrow{\mathrm{OX}}=\frac{1}{5}\left(14 \mathrm{q}_{-}-4 \mathrm{p}\right)$

TOPIC 7 SOLUTIONS: TROGONOMTRY

1. (a) (i) to find $P Q=r$, first find angle R

$$
\begin{aligned}
& \widehat{\mathrm{R}}=180^{\circ}-\left(46^{\circ}+36^{\circ}\right) \\
& =98^{\circ} \\
& \therefore \frac{\sin \mathrm{R}}{\mathrm{r}}=\frac{\sin P}{\mathrm{p}} \\
& \frac{\sin 98^{\circ}}{\mathrm{r}}=\frac{\sin 46^{\circ}}{36.5} \\
& \mathrm{r} \sin 46^{\circ}=36.5 \sin 98^{\circ} \\
& r=\frac{36.5 \sin 98^{\circ}}{\sin 46^{\circ}} \\
& r=50.24716343 \\
& \therefore \mathbf{P Q} \approx \mathbf{5 0 . 2} \mathbf{k m}
\end{aligned}
$$

(ii) $\mathrm{A}=\frac{1}{2} \times \mathrm{p} \times \mathrm{r} \times \sin \mathrm{Q}$

$$
=\frac{1}{2} \times 36.5 \times 50.2 \times \sin 36^{\circ}
$$

$$
=916.15 \sin 36^{\circ}
$$

$\therefore \mathrm{A}=538.4994589 \approx \mathbf{5 3 8 . 5} \mathbf{~ k m}^{2}$
(ii) Shortest distance $=\frac{2 A}{b}=\frac{2 \times 538.2}{50.2} \approx \mathbf{1 0 . 7} \mathbf{~ k m}$
(b) $\sin \theta=0.6792$

$$
\begin{aligned}
& \theta=\sin ^{-1}(0.6792) \rightarrow \text { press shift } / 2^{\text {nd }} \mathrm{f} \text { and then } \sin \\
& \theta=42.8^{\circ}
\end{aligned}
$$

In the $1^{\text {st }}$ quadrant $\theta=42.8^{\circ}$
In the $2^{\text {nd }}$ quadrant $\theta=180-42.8=137.2^{\circ}$

$$
\therefore \theta=42.8^{\circ} \text { or } \theta=137.2^{\circ}
$$

2. (a) (i) $\mathrm{A}=\frac{1}{2} t s \sin H$

$$
\begin{aligned}
A & =\frac{1}{2} \times 1.3 \times 1.9 \sin 130^{\circ} \\
\mathrm{A} & =1.235 \sin 130^{\circ} \\
\mathrm{A} & =0.946 \\
\mathrm{~A} & \approx 0.95 \mathrm{~km}^{2}
\end{aligned}
$$

(ii) $h^{2}=t^{2}+s^{2}-2 t s \cos H$

$$
\begin{aligned}
& \mathrm{h}^{2}=(1.3)^{2}+(1.9)^{2}-2(1.3)(1.9) \cos 130^{\circ} \\
& \mathrm{h}^{2}=5.3-(-3.175370792) \\
& \mathrm{h}^{2}=5.3+3.17537 \\
& \mathrm{~h}^{2}=8.475370792 \\
& \mathrm{~h}^{2}=\sqrt{8.475370792} \\
& \mathrm{~h}=2.911249009
\end{aligned}
$$

3. (i) $\mathrm{k}^{2}=\mathrm{i}^{2}+\mathrm{m}^{2}-2 \mathrm{imcos} \mathrm{K}$
$\mathrm{k}^{2}=5^{2}+3^{2}-2(5)(3) \cos 110^{\circ}$
$\mathrm{k}^{2}=34-(-10.2606043)$
$\mathrm{k}^{2}=44.26060643$
$\mathrm{k}=\sqrt{44.26060643}$
$\mathrm{k}=6.656864368$
$\therefore \mathrm{MI} \approx 6.65 \mathrm{~km}$
(iii) Shortest distance $=\frac{2 A}{b}$

$$
\begin{aligned}
& =\frac{2 \times 0.95}{2.9} \\
& =0.65517 \\
& \approx \mathbf{0 . 6 6 k m}
\end{aligned}
$$

(b) $\cos \theta=\frac{2}{3}$

$$
\theta=\cos ^{-1}\left(\frac{2}{3}\right)
$$

$\theta=48.1896851$
$\therefore \theta \approx 48.2^{\circ}$

$$
\therefore \mathrm{TS} \approx \mathbf{2 . 9 k m}
$$

(ii) $\mathrm{A}=\frac{1}{2} \times i \times m \sin K$
(b) $\tan \theta=0.7$
$A=\frac{1}{2} \times 5 \times 3 \sin 110^{\circ}$

$$
A=7.5 \sin 110^{\circ}
$$

$$
A=7.047694656
$$

$$
\begin{aligned}
& \theta=\tan ^{-1}(0.7) \\
& \theta=34.9920202 \\
& \boldsymbol{\theta} \approx \mathbf{3 5}^{\circ}
\end{aligned}
$$

$A \approx 7.05 \mathrm{~km}^{2}$
(iii) shortest. Distance $=\frac{2 A}{b}=\frac{2 \times 7.05}{6.65}$
$\approx 2.12 \mathrm{~km}$
4. (a) (i) $\operatorname{Cos} \mathrm{A}=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\operatorname{Cos} \mathrm{A}=\frac{43^{2}+43^{2}-37^{2}}{2(43)(43)}$
$\operatorname{Cos} \mathrm{A}=\frac{2329}{3698}$
$A=\cos ^{-1}\left(\frac{2329}{3698}\right)$
$A=50.96463954$
$\therefore \mathrm{BAC} \approx \mathbf{5 1}^{\circ}$
(ii) $\mathrm{A} \widehat{\mathrm{C}}=\left(180^{\circ}-51\right) \div 2$
$A \widehat{C} B=129^{\circ} \div 2$
$\therefore \mathrm{A} \widehat{\mathrm{C}}=64.5^{\circ}$
(iii) $\mathrm{A}=\frac{1}{2} a b \sin C$
$A=\frac{1}{2} \times 37 \times 43 \times \sin 64.5$
(b) $\cos \theta=0.5$

$$
\mathrm{A}=795.5 \sin 64.5^{\circ}
$$

$\mathrm{A}=718.0 \mathrm{~km}^{2}$
(iv) S. distance $=\frac{2 A}{b}$

$$
\begin{aligned}
& =\frac{2 \times 718.0}{43} \\
& =33.39565552 \\
& \approx 33 \mathrm{~km}
\end{aligned}
$$

5. (i) $\mathrm{A}=\frac{1}{2} m c \sin K$
$A=\frac{1}{2} \times 78 \times 123 \times \sin 81^{\circ}$
$A=4797 \sin 81^{\circ}$
$A=4737.94097$
$A \cong 4700 \mathrm{~km}^{2}$
(ii) $\quad k^{2}=c^{2}+m^{2}-2 c m \cos K$

$$
k^{2}=(123)^{2}+(78)^{2}-2(123)(78) \operatorname{Cos} 81^{\circ}
$$

$$
k^{2}=21213-(3001.664515)
$$

$$
k^{2}=18211.33548
$$

$$
k=\sqrt{18211.33548}
$$

$$
\mathrm{k}=134.9493812
$$

$$
\therefore C M \approx 135 \mathrm{~km}
$$

(iii) K $215000 \times 135=\boldsymbol{K} \mathbf{2 9 0 2 5 0 0 0}$
was the total cost for constructing road CM

TOPIC 8 SOLUTIONS: MENSURATION

1. (i) Let height $\mathrm{EA}=x$, then
$\frac{x}{4}=\frac{15+x}{12}$
$12 x=4(15+x)$
$12 x=60+4 x$
$12 x-4 x=60$
$8 x=60$
$x=7.5$
$\therefore \mathbf{A E}=7.5$ And $\mathrm{AD}=7.5+15=\mathbf{2 2 . 5} \mathbf{c m}$
2. First find the height of the small cone that was cutoff.
$\frac{h}{7}=\frac{20+h}{21}$
$21 h=7(20+h)$
$21 h=140+7 h$
$21 h-7 h=140$
$14 h=140$
$h=10 \mathrm{~cm}$ and $\mathrm{H}=10+20=30 \mathrm{~cm}$
(ii) Volume that remained is the that of the frustum
$\mathrm{V}=\frac{1}{3} \pi R^{2} H-\frac{1}{3} \pi r^{2} h$
$\mathrm{V}=\frac{1}{3} \pi\left(R^{2} H-r^{2} h\right)$
$\mathrm{V}=\frac{1}{3} \times 3.142\left(12^{2} \times 22.5-4^{2} \times 7.5\right)$
$V=\frac{3.142}{3}(3240-120)$
$V=\frac{3.142}{3}(3120)$
$\mathrm{V}=3267.68 \mathrm{~cm}^{3}$
$\therefore V=\frac{1}{3} \pi R^{2} H-\frac{1}{3} \pi r^{2} h$
$\mathrm{V}=\frac{1}{3} \pi\left(R^{2} H-r^{2} h\right)$
$\mathrm{V}=\frac{3.142}{3}\left(21^{2} \times 30-7^{2} \times 10\right)$
$V=\frac{3.142}{3}(13230-490)$
$V=\frac{3.142}{3}(12740)$
$\mathrm{V}=13343.02667$
$\mathrm{V} \cong 13343 \mathrm{~cm}^{2}$
3.

(a) $V=l b h$
$\mathrm{V}=1.2 \times 0.9 \times 10$
$\mathrm{V}=10.8 \mathrm{~cm}^{3}$
$1 \mathrm{~cm}^{3} \rightarrow 1000 l$
$10.8 \mathrm{~cm}^{3} \rightarrow x$
$x=10.8 \times 1000 l$
$x=10800 l$
$\therefore V=10800 l$
(b) first find the radius of a cone $r^{2}=13^{2}-12^{2}$
$r^{2}=25$
$\mathrm{r}=\sqrt{25}$
$\mathrm{r}=5 \mathrm{~cm}$
\therefore T.S. $A=\pi r^{2}+\pi r l$
T.S.A $=\pi r(r+l)$
T.S.A $=3.142 \times 5(5+13)$
T. S. $A=282.78 \mathrm{~cm}^{2}$

4. (i) T. S. $\mathrm{A}=2 \pi r^{2}+2 \pi r h$
T. S. $A=2 \pi r(r+h)$
T.S. $A=(2 \times 3.142 \times 10)(10 \times 250)$
T.S. $A=62.84(260)$
T. S. $A=16338.4 \mathrm{~cm}^{2}$
5. (i) Perimeter of the two small circles
$\mathrm{P}=2 \pi r+2 \pi r$
$\mathrm{P}=4 \pi r$
$\mathrm{P}=4 \times 3.142 \times 10$
$\mathrm{P}=125.68 \mathrm{~cm}$
(ii) $\quad \mathrm{V}=\pi r^{2} h$
$\mathrm{V}=3.142 \times 10^{2} \times 250 \quad x=\frac{78550 \times 1000}{1000000}$
$\mathrm{V}=78550 \mathrm{~cm}^{3} \quad \mathrm{x}=78.55 \mathrm{l}$
$1000000 \mathrm{~cm}^{3} \rightarrow 1000 l \quad \therefore \boldsymbol{V}=\mathbf{7 8 . 5 5 l}$
$78550 \mathrm{~cm}^{3}=x$
(ii) Area of the shaded part
$A=$ area of large circle - area of two small circles
$\mathrm{A}=\pi R^{2}-2 \pi r^{2}$
$\mathrm{A}=3.142 \times 20^{2}-2\left(3.142 \times 10^{2}\right)$
$\mathrm{A}=1256.8-628.4$
$A=628.4 \mathrm{~cm}^{2}$

TOPIC 9 SOLUTIONS: EARRTH GEOMETRY

1. (i)

(ii)(a) Distance $\mathrm{QR}=\frac{\theta}{360^{\circ}} \times 2 \pi R \quad \theta=80^{\circ}+85^{\circ}=165^{\circ}$
$\mathrm{QR}=\frac{165^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 3437$
$\mathrm{QR}=9899.132833$
(b) $\mathrm{C}=2 \pi R \cos \theta$
$C=21600 \operatorname{Cos} \theta$
$\mathrm{QR} \approx 9900 \mathrm{~nm}$
$C=21600 \times \cos 85^{\circ}$
$\mathrm{C}=1882.564043$
$\mathrm{C} \approx 1900 \mathrm{~nm}$
2. (i) Difference in latitudes
$\boldsymbol{\theta}=80^{\circ}+30^{\circ}=\mathbf{1 1 0}^{\circ}$
(ii) (a) $\mathrm{XZ}=\frac{\theta}{360} \times 2 \pi R$

$$
\begin{aligned}
\mathrm{XZ} & =\frac{110^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 3437 \\
\mathrm{XZ} & =6599.421889 \\
\mathrm{XZ} & \approx \mathbf{6 6 0 0} \mathbf{n m}
\end{aligned}
$$

(b) $\mathrm{YZ}=\frac{\alpha}{360^{\circ}} \times 2 \pi R \cos \theta$ where $\alpha=15^{\circ}+105=120^{\circ}$
$\mathrm{YZ}=\frac{120^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 3437 \times \cos 30^{\circ}$
$Y Z=6234.836734$
$\mathrm{YZ} \approx 6200 \mathrm{~nm}$
3. (i) Difference in latitudes

$$
\theta=50^{\circ}+70^{\circ}=\mathbf{1 2 0}^{\circ}
$$

(ii) $\mathrm{C}=2 \pi R \cos \theta$
$\mathrm{C}=21600 \cos 50^{\circ}$
C=13884.21237nm
$\mathrm{C} \approx 19000 \mathrm{~nm}$
(ii) $\mathrm{AD}=\frac{\theta}{360^{\circ}} \times 2 \pi R$
$\mathrm{AD}=\frac{120^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 3437$
AD $=7199.369333$
$A D \approx 7200 \mathrm{~nm}$
4. (i) $\mathrm{A}\left(60^{\circ} \mathrm{N}, 61^{\circ} \mathrm{W}\right)$

B $\left(80^{\circ} \mathrm{S}, 61^{\circ} \mathrm{W}\right)$
(ii) Difference in longitudes

$$
\propto=81^{\circ}-31^{\circ}=50^{\circ}
$$

(iv) local time at C

$1 h=15^{\circ}$	$13: 05$
$x=50^{\circ}$	$-3: 20$

(iii) $\mathrm{CD}=\frac{\alpha}{360^{\circ}} \times 2 \pi R \cos \theta$
$x=\frac{50^{\circ}}{15^{\circ}}$
0955 hrs
$\mathrm{CD}=\frac{50^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 3437 \times \cos 80^{\circ}$
$x=3 \frac{5}{15}$
$\mathrm{CD}=520.8989021 \mathrm{~nm}$
$\frac{5}{15} \times 60=20$ minutes

$$
\mathrm{CD} \approx 521 \mathrm{~nm}
$$

5. (i) $\mathrm{C}\left(45^{\circ} \mathrm{N}, 85^{\circ} \mathrm{E}\right)$
(ii) Difference in latitudes $\theta=45^{\circ}+55^{\circ}=\mathbf{1 0 0}^{\circ}$
(iii) $\mathrm{CD}=\frac{\theta}{360^{\circ}} \times 2 \pi R$
(iv) $\mathrm{C}=2 \pi R \cos \theta$
$C D=\frac{100^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 3437$
$C D=6999.47444$
$C=21600 \cos \theta$
$C D \approx 6000 \mathrm{~nm}$
$C=15273.50647$
$\mathrm{C}=15000 \mathrm{~nm}$

TOPIC 10 SOLUTIONS: STATISTICS

1.

Class marks	Midpoints (x)	Frequency (f)	$f x$	x^{2}	$f x^{2}$
$25<x \leq 30$	27.5	5	137.5	756.25	3781.25
$30<x \leq 35$	32.5	4	130	1056.25	4225
$35<x \leq 40$	37.5	7	262.5	1406.25	9843.75
$40<x \leq 45$	42.5	11	467.5	1806.25	19868.75
$45<x \leq 50$	47.5	12	570	2256.25	27075
$55<x \leq 55$	52.5	8	420	2256.25	22050
$55<x \leq 60$	57.5	1	57.5	3306.25	3306.25
Totals		$\sum f=48$	$\sum x=2045$		$\sum f x^{2}$
				$=90150$	

$$
\begin{aligned}
& \bar{x}=\frac{\sum f x}{\sum f}=\frac{2045}{\mathbf{4 8}}=42.6 \\
& \mathrm{SD}=\sqrt{\left\{\frac{\sum \mathrm{fx}^{2}}{\sum \mathrm{f}}-(\overline{\mathrm{x}})^{2}\right\}} \\
& \mathrm{SD}=\sqrt{\frac{90150}{48}-(42.6)^{2}} \\
& \mathrm{SD}=\sqrt{1878.125-1814.76} \\
& \mathrm{SD}=\sqrt{63.365} \\
& \mathrm{SD}=7.96 \approx \mathbf{8}
\end{aligned}
$$

2.

Class marks	\boldsymbol{x}	\boldsymbol{f}	$\boldsymbol{f x}$	$(\boldsymbol{x}-\overline{\boldsymbol{x}})^{\mathbf{2}}$	$\boldsymbol{f} \boldsymbol{f}(\boldsymbol{x}-\overline{\boldsymbol{x}})^{\mathbf{2}}$
$0<x \leq 5$	2.5	13	32.5	12.25	159.25
$5<x \leq 10$	7.5	27	205.5	17.2225	465.0
$10<x \leq 15$	12.5	35	437.5	0.7225	25.288
$15<x \leq 20$	17.5	16	280	34.2225	547.58
$20<x \leq 25$	22.5	7	157.5	117.7225	824.058
$25<x \leq 30$	27.5	2	55	251.2225	502.445
		$\sum f=100$	$\sum f x=1168$		$\sum$$\sum(x-\bar{x})^{2}$ $=2523.621$

$\overline{\boldsymbol{x}}=\frac{\sum f x}{\sum f}=\frac{1165}{100}=\mathbf{1 1 . 6 5}$
$\mathrm{SD}=\sqrt{\frac{\Sigma f(x-\bar{x})^{2}}{\sum f}}=\sqrt{\frac{2523.621}{100}}=\sqrt{\mathbf{2 5 . 2 3 6 2 1}}=5.023565467$
$\mathrm{SD} \approx 5$
3.

Class marks	$\boldsymbol{x} \boldsymbol{x}$	\boldsymbol{f}	$\boldsymbol{f} \boldsymbol{x}$	$\boldsymbol{x}^{\mathbf{2}}$	$\mathrm{f} \boldsymbol{x}^{\mathbf{2}}$
$0<x \leq 10$	5	7	35	25	175
$10<x \leq 20$	15	22	330	225	4950
$20<x \leq 30$	25	28	700	625	17500
$30<x \leq 40$	35	23	805	1225	28175
$40<x \leq 50$	45	15	675	2025	30375
$50<x \leq 60$	55	5	275	3025	15125
		$\sum \boldsymbol{f}=\mathbf{1 0 0}$	$\sum \boldsymbol{f} \boldsymbol{x}=\mathbf{2 8 2 0}$		$\boldsymbol{f} \boldsymbol{x}^{\mathbf{2}}$ $=\mathbf{9 6 3 0 0}$

Mean $=\bar{x}=\frac{\Sigma f x}{\Sigma f}=\frac{2820}{100}=28.2$

$$
\begin{aligned}
\therefore S D & =\sqrt{\frac{\sum f x^{2}}{\sum f}-(\bar{x})^{2}} \\
S D & =\sqrt{\frac{96300}{100}-(28.2)^{2}} \\
S D & =\sqrt{963-795.24} \\
S D & =\sqrt{167.76} \\
S D & =12.95221989 \\
& \approx \mathbf{1 3}
\end{aligned}
$$

4. \quad Mean $=\bar{x}=\frac{\Sigma f x}{\Sigma x}$

$$
\begin{aligned}
& \sum f x=(15 \times 20)+(25 \times 50)+(35 \times 55)+(45 \times 70)+(55 \times 60)+(65 \times 40)+(75 \times 35) \\
& \sum f x=16475 \\
& \sum f=350 \\
& \sum f(10 \times 85)+(95 \times 5) \\
& \therefore \bar{x}=\frac{16475}{350} \\
& \bar{x}=47.0742857
\end{aligned}
$$

$$
=47.1
$$

CAUTIONS: NO PART OF THIS PAMPHLET MAY BE REPRODUCED WITHOUT A PERSSION OF THE AUTHOR

WISH YOU ALL THE BEST DURING YOUR REVISIONS

