INTRODUCTION

-This book is written mainly for Zambian pupils in Grade $10-12$ pupils, but it can also be useful to anyone seeking a basic knowledge of Mathematics.
-It is intended for both study and revision.
-It covers the Mathematics High School Syllabus in Zambia as much as possible, but the contents of this book are not enough to get 100% of knowledge in Mathematics.
-Teacher's explanation is needed to learn the contents in this book even if all pupils have this textbook.
-This book is sold through JOCV (Japan Overseas Cooperation Volunteers) teacher's committee only.
-The price can be decided as the lowest price by only JOCV teacher's committee.
-The price includes only the expense for the materials needed to produce this booklet and no one will make profit from this booklet.
-Only JOCV can edit this book.

ACKNOWLEDGEMENT

I would like to say thanks to all mathematicians, authors and publishers, especially to J F Talbert 'Success in Examinations Mathematics Syllabus D', Karen Morisson 'IGCSE Mathematics', Tori Large 'Usborne Dictionary of Math', Frank Tapson 'Barron's Mathematics Study Dictionary' and Hidenori KUGA 'Masamu Ofunica' for giving many useful ideas.
Thanks Peter Kausa and Patience Kabaso for giving the wonderful title and book cover.

I hope that this book helps all Zambian pupils make progress in Mathematics.

March 2009
Motoki KAMIZONO from DENSO
2007 - 2009 Nyimba Boarding Secondary School
Japan Overseas Cooperation Volunteers - JOCV

CONTENTS

1	Basic Arithmetic	1
1.1	Numbers	1
1.2	Operations on Real Numbers	1
1.3	Factors and Multiples	2
1.4	Conversions of Fractions, Decimals and Percentages	2
1.5	Operations of Fractions	3
1.6	Ratio and Scale	3
2	Commercial Arithmetic	5
2.1	Profit and Loss	5
2.2	Discount	5
2.3	Simple Interest	5
3	Indices, Standard Form and Approximations	6
3.1	Indices	6
3.2	Standard Form	6
3.3	Approximations	7
4	Sets	8
4.1	Set Notation and Presentation	8
4.2	Operations on Sets	8
5	Basic Algebra	10
5.1	Algebraic Expression	10
5.2	Factorisation	10
5.3	Algebraic Fractions	11
6	Equations	13
6.1	Rearranging an Equation (Changing the subject of an equation)	13
6.2	Linear Equations	13
6.3	Quadratic Equations	14
6.4	Equations Involving Indices	15
6.5	Functions	16
7	Coordinates and Graphs	17
7.1	Coordinate Systems	17
7.2	General Graph Terms	17
7.3	Straight Line Graphs	17
7.4	Curve Graphs	18
7.5	Distance-Time and Speed-Time Graphs	19
8	Inequations and Linear Programming	21
8.1	Basic Inequation	21
8.2	Linear Inequations	21
8.3	Linear Programming	22
9	Proportion and Variation	24

6.1 Rearranging an Equation (Changing the ubject of an equation)
Linear Equations
Equations Involving Indices Functions
Coordinates and Graphs
Coordinate Systems
Straight Line Graphs
Curve Graphs
位
Inequations and Linear Programming
Linear Inequations
Linear Programming
Proportion and Variation

9.1	Proportion	24
9.2	Variation	24
10	Angles, Polygons and Bearings	25
10.1	Angles	25
10.2	Polygons	25
10.3	Pythagoras Theorem	27
10.4	Bearings	28
11	Angle Properties in a Circle	29
11.1	Parts of a Circle	29
11.2	Angles in a Circle	29
11.3	Cyclic Quadrilaterals	30
11.4	Tangents	30
12	Symmetry	32
12.1	Line Symmetry	32
12.2	Rotational Symmetry	32
13	Similarity	33
13.1	Similar Triangles	33
13.2	Areas of Similar Figures	33
14	Mensuration	34
14.1	Perimeters and Areas of Plane Figures	34
14.2	Surface Areas and Volumes of ThreeDimensional Figures	35
15	Geometrical Constructions and Loci	37
15.1	Basic Constructions	37
15.2	Constructing triangles	38
15.3	Loci	38
16	Trigonometry	39
16.1	Trigonometric Ratios	39
16.2	Non-right-angled Triangles	40
17	Matrices	42
17.1	Calculations of Matrices	42
17.2	Inverse Matrix	43
18	Vectors	44
18.1	Basic Vector	44
18.2	Vector Geometry	45
19	Transformation	47
19.1	Translation	47
19.2	Transformations Represented by 2×2 Matrices	48
19.3	Reflection	48
19.4	Rotation	49
19.5	Enlargement	50
19.6	Stretch	50
19.7	Shear	51
20	Earth Geometry	52

20.1 Latitude and Longitude20.2 Distance along Circles of Latitude andLongitude53
20.3 Time
21 Probability 55
21.1 Theoretical Probability 55
21.2 Combined Events58
22.1 Presentation 58
22.2 Measures 58
22.3 Frequency Distributions 59
22.4 Cumulative Frequency 60
Answers 64

1 Basic Arithmetic

(ア) Numbers

Integers: are numbers which are not fractions.
The set of integers is denoted by the symbol \mathbf{Z}.

Natural numbers: are the positive integers. $1,2,3,4,5, \ldots$
The set of natural numbers is denoted by the symbol \mathbf{N}.
Whole numbers: are the set of natural numbers and zero.
Even numbers: are integers which can be divided by 2 without a remainder.
Any integer which ends with $0,2,4,6$ or 8 must be even.
Odd numbers: are integers which cannot be divided by 2 without a remainder.
Any integer which ends with $1,3,5,7$ or 9 must be odd.
Prime numbers: are numbers which can only be divided by 1 and themselves.
$2,3,5,7,11,13,17,19,23,29,31,37, \ldots$
There is an infinite number of prime numbers.
-1 is NOT a prime number.
-2 is the only even prime number.
Rational numbers: are numbers which can be written in the form $\frac{a}{b}$ where a and b are integers and b is not zero.
e.g. $-2.5,0 . \overline{3}, \mathbf{0 .} \overline{09}, 3 . \overline{142857}$ and 4 are all rational since they can be rewritten as: $-\frac{5}{2}, \frac{1}{3}, \frac{1}{11}, \frac{22}{7}$ and $\frac{4}{1}$ respectively.
Irrational numbers: are numbers which are not rational and so cannot be written in the form $\frac{a}{b}$.
e.g. $\sqrt{2}=1.41421356 \ldots, \pi=3.141592653 \ldots$

Real numbers: The set of real numbers is made up of all rational and irrational numbers together.
The set of real numbers is denoted by the symbol \mathbf{R}.

Significant figures (sf): indicate the accuracy of numbers
For any number, the first significant figure is the first non-zero digit. After that,

- in case of whole numbers, all digits are counted as significant up to the last non-zero digit.
- in case of decimals, all digits are counted as significant.
e.g.

4 sf	1234	12.34	1.023	0.01234	0.001002
3 sf	1230	1200	12	12	1.02
0.0123	0.00100				
2 sf	1000	10	1	0.012	0.0010
1 sf					0.01

(イ) Operations on Real Numbers

Order of operation s: There is an established order in which operations must be done. Anything in brackets has to be done first, then multiplication and division, and then addition and subtraction. An aid to memorise this order is BoDMAS (Brackets of Division, Multiplication, $\underline{\text { Addition }}$ and $\underline{\text { Subtraction })}$
e.g. $(2+4) \times 3-1=6 \times 3-1=18-1=17$
$2+4 \times(3-1)=2+4 \times 2=2+8=10$
$(2+4) \times(3-1)=6 \times 2=12$
$2+4 \times 3-1=2+12-1=13$
The commutative law: states that for any two real numbers, the order of operation of addition and multiplication doesn't matter.

$$
a+b=b+a, a b=b a \quad \text { e.g. } 3+5=5+3,3 \times 6=6 \times 3
$$

BUT subtraction and division are not commutative.

$$
a-b \neq b-a, a \div b \neq b \div a \quad \text { e.g. } 3-5 \neq 5-3,3 \div 6 \neq 6 \div 3
$$

The associative law: states that for any three real numbers, the grouping in an expression of addition and multiplication doesn't matter
$(a+b)+c=a+(b+c),(a b) c=a(b c) \quad$ e.g. $(2+3)+4=2+(3+4),(2 \times 3) \times 4=2 \times$
BUT subtraction and division are not associative.
$(a-b)-c \neq a-(b-c)$
e.g. $(2-3)-4 \neq 2-(3-4)$
$(a \div b) \div c \neq a \div(b \div c)$
e.g. $(2 \div 3) \div 4 \neq 2 \div(3 \div 4)$

The distributive law: states that when it is performed on two or more quantities already combined by another operation, the result is the same as when it is performed on each quantity individually and the products then combined.
$a(b+c)=a b+a c$ e.g. $2 \times(3+4)=2 \times 3+2 \times 4$

(ウ) Factors and Multiples

Factors of a number: A factor is a whole number which divides exactly into it.
1 is a factor of every number and every number is a factor of itself.
e.g. The factors of 12 are $1,2,3,4,6$ and 12 .

Any whole number can be written as a product of its factors.
e.g. $12=1 \times 12,12=2 \times 6,12=3 \times 4$

Prime factors: The prime factors of a number are factors which are also prime numbers.
e.g. The prime factors of 12 are 2 and 3.

A non-prime number can be expressed uniquely as a product of prime factors.
e.g. $60=2 \times 2 \times 3 \times 5=2^{2} \times 3 \times 5$

To find the factors of a number, divide by the prime numbers in turn until no further division is possible.
Example 1 Express 360 as the product of its prime factors.

2	360	
2	180	
2	90	
3	45	
3	$\therefore 360$	$=2 \times 2 \times 2 \times 3 \times 3 \times 5$
3	15	
		5

Highest Common Factor (HCF): The HCF of two (or more) numbers is the largest number which is a factor of each.
e.g. 12 has $1,2,3,4,6$ and 12 as factors.

18 has $1,2,3,6,9$ and 18 as factors.
The common factors of 12 and 18 are 1,2,3 and 6 .
The HCF is 6 .

To find the HCF, express each number as a product of the prime factors and select all the common factors.
Example 2 Find the HCF of 168,252 and 360.

$$
\begin{array}{ll}
168=\mathbf{2} \times \mathbf{2} \times 2 \times \mathbf{3} \times 7 & 2 \text { and } 3 \text { are } \\
252=\mathbf{2} \times \mathbf{2} \times \mathbf{3} \times 3 \times 7 & \text { tte only } \\
360=\mathbf{2} \times \mathbf{2} \times 2 \times \mathbf{3} \times 3 \times 5 & \text { common factors } .
\end{array}
$$

Therefore the HCF $=2 \times 2 \times 3=12$
Multiples of a number: A multiple is a number made by multiplying that number with a whole number.
e.g. The multiples of 3 are $0,3,6,9,12, \ldots$

Lowest Common Multiple (LCM): The LCM of two (or more) numbers is the smallest number which is a multiple of each.

To find the LCM, express each number as a product of the prime factors and select all the different factors without repetition.
Example 3 Find the LCM of 6, 12 and 15

$$
\begin{aligned}
& 6=2 \times 3 \\
& 12=2 \times 2 \times 3 \\
& 15=3 \times 5
\end{aligned}
$$

Therefore the LCM $=2 \times 2 \times 3 \times 5=60$

(エ) Conversions of Fractions, Decimals and Percentages

Converting a fraction to a decimal: divide the numerator by the denominator.

$$
\text { e.g. } \frac { 1 } { 8 } = 0 . 1 2 5 \because 8 \longdiv { 0 . 1 2 5 }
$$

Converting a decimal to a fraction: place the decimal numbers over the appropriate number of power of 10 .
e.g. $0.3=\frac{3}{10}, \quad 4.25=4 \frac{25}{100}=4 \frac{1}{4}$

Converting a fraction to a percentage: multiply the fraction by 100 and put $\%$.
e.g. $\frac{2}{5}=\frac{2}{5} \times 100 \%=40 \%, \frac{1}{8}=\frac{1}{8} \times 100 \%=12 \frac{1}{2} \%$ or 12.5%

Converting a percentage to a fraction: divide the percentage by 100 and remove $\%$.
e.g. $5 \%=\frac{5}{100}=\frac{1}{20}, \quad 12.5 \%=\frac{12.5}{100}=\frac{12.5}{100} \times \frac{10}{10}=\frac{125}{1000}=\frac{1}{8}$

Converting a decimal to a percentage: shift the decimal point two places to the RIGHT.
e.g. $0.25=25 \%, 0.0075=0.75 \%, 1.5=150 \%$

U
u
U
Converting a percentage to a decimal: shift the decimal point two places to the LEFT. e.g. $78.5 \%=0.785,120 \%=1.2$

N
AN
(才) Operations of Fractions
Adding and subtracting fractions: express each fraction in terms of the same denominator (the LCM) and add / subtract the numerators.
Example 4 Calculate $\frac{1}{3}+\frac{2}{5}-\frac{1}{4}$
LCM of $3,5,4$ is $60 . \frac{1}{3}+\frac{2}{5}-\frac{1}{4}=\frac{20+24-15}{60}=\frac{29}{60}$
With mixed numbers, either convert to improper fractions first or deal with whole numbers separately.
Example 5 Calculate $1 \frac{1}{5}-2 \frac{3}{4}+3 \frac{1}{2}$

$$
1 \frac{1}{5}-2 \frac{3}{4}+3 \frac{1}{2}=\frac{6}{5}-\frac{11}{4}+\frac{7}{2}=\frac{24-55+70}{20}=\frac{39}{20}\left(=1 \frac{19}{20}\right)
$$

$$
\text { or }=1-2+3+\frac{1}{5}-\frac{3}{4}+\frac{1}{2}=2+\frac{4-15+10}{20}=2-\frac{1}{20}=1 \frac{19}{20}
$$

Multiplying fractions: multiply the numerators together and then denominators together (after any cancelling which may be possible).
Example 6 Calculate $\frac{3}{4} \times \frac{1}{2} \times \frac{5}{6}$

$$
\frac{3}{4} \times \frac{1}{2} \times \frac{5}{6}=\frac{1}{\mathfrak{B} \times 1 \times 5} 4 \times 2 \times 6
$$

To multiply mixed numbers, first convert them to improper fractions.
Example 7 Calculate $6 \times 1 \frac{2}{3} \times \frac{2}{5}$

$$
6 \times 1 \frac{2}{3} \times \frac{2}{5}=\frac{6}{1} \times \frac{5}{3} \times \frac{2}{5}=\frac{2,6 \times 8 \times 2}{1 \times \underset{8}{8} \times \mathbf{8}}=\frac{2 \times 1 \times 2}{1 \times 1 \times 1}=4
$$

Dividing fractions: To divide by a fraction, multiply by its reciprocal. (The reciprocal of $\frac{a}{b}$ is $\frac{b}{a}$.)
Example 8 Calculate $\frac{3}{5} \div \frac{2}{3}$

$$
\frac{3}{5} \div \frac{2}{3}=\frac{3}{5} \times \frac{3}{2}=\frac{3 \times 3}{5 \times 2}=\frac{9}{10}
$$

(カ) Ratio and Scale

Ratio: is used to compare the sizes of two (or more) quantities. Ratios are written with a colon (:).
e.g. If there are 25 girls and 23 boys in a class, the ratio of girls to boys is said to be $25: 23$ (this can also be written as the fraction $\frac{25}{23}$) and the ratio of boys to girls is said to be $23: 25$.

Example 9 If angles a, b and c in a triangle are in the ratio $4: 3: 5$, what is the size of each angle?

Total number of parts $=4+3+5=12$
The sum of interior angles in a triangle $=180^{\circ}$
One part is $\frac{180^{\circ}}{12}=15^{\circ}$

Angle a is $4 \times 15^{\circ}=60^{\circ}$ Angle b is $3 \times 15^{\circ}=45^{\circ}$ Angle c is $5 \times 15^{\circ}=75^{\circ}$

Simplifying ratios: Ratios can often be simplified. To simplify a ratio, divide or multiply both parts by the same number.
Example 10 Find in simplest form the ratio of: (a) $\frac{1}{3}: 2$ (b) $30 \mathrm{~min}: 2 \mathrm{hr}$
(a) Multiply both parts by 3 to convert the fraction into an integer.
$\frac{1}{3} \times 3=1$ and $2 \times 3=6$ So $\frac{1}{3}: 2=1: 6$
(b) Express both parts in the same unit and then divide both parts by their HCF.
$30 \mathrm{~min}: 2 \mathrm{hr}=30 \mathrm{~min}: 120 \mathrm{~min}(\because 2 \mathrm{hr}=2 \times 60 \mathrm{~min}=120 \mathrm{~min})$

$$
=1: 4(\because \mathrm{HCF}=30)
$$

Scales on maps and plans: These are stated in a ratio form $1: n$. This ratio gives the representative fraction $\left(\frac{1}{n}\right)$ of the map.
e.g. A scale of $1: 50000$ means that 1 cm on the map represents $50000 \mathrm{~cm}(0.5 \mathrm{~km})$ on the ground.
Example 11 A map is drawn to a scale of $1: 50000$.
(a) On the map the length of a straight road is measured as 7.5 cm . What is the actual distance of the road in km ?
(b) If the area of a maize field is $2 \mathrm{~km}^{2}$, what is its area on the map in cm^{2} ?
(a) 1 cm on the map represents $50000 \mathrm{~cm}=0.5 \mathrm{~km}$ on the ground.

If x represents the actual distance of the road,

$$
1: 0.5=7.5: x \quad \therefore x=0.5 \times 7.5=1.5 \mathrm{~km}
$$

(b) $1 \mathrm{~cm}^{2}$ on the map represents $0.5 \times 0.5=0.25 \mathrm{~km}^{2}$ on the ground.

So if y represents the area of the maize field on the map,
$1: 0.25=y: 2 \quad \therefore y=\frac{1 \times 2}{0.25}=8 \mathrm{~cm}^{2}$

Exercise 1

1 Find the number of significant figures. (a) 235 (b) 0.423 (c) 0.004 (d) 24000 (e) 2.000 (f) 0.0510

2 Calculate the following.
(a) $7-2+3 \times 4$
(b) $(-4) \times(-3)+(-3) \times 2$
(c) $-5 \times 7-24 \div 3$

3 Evaluate the following.
(a) $2 \frac{3}{4}+1 \frac{1}{2}-4 \frac{1}{8}$
(b) $2 \frac{1}{2}-4 \frac{1}{6}+3 \frac{2}{5}$
(c) $1 \frac{1}{3} \div 1 \frac{1}{6}$
(d) $2 \frac{1}{3} \div\left(2 \frac{1}{2}-1 \frac{4}{5}\right)-1 \frac{3}{4}$

4 Find the prime factors of 42,70 and 105 , and state their HCF and LCM.
5 The ratio of the numbers of boys to girls in a school is $7: 6$. If there are 455 pupils, how many boys are there?
6 Find in simplest form the ratio of: (a) $2 \mathrm{hr} 15 \mathrm{~min}: 13 \min 30 \sec$ (b) $\frac{2}{3}: 1 \frac{1}{4}: 1$
7 A map is drawn to a scale of $1: 20000$.
(a) The distance of an airport runway is represented by 8 cm on the map. Calculate its actual distance in km .
(b) The actual distance of a railway is 6 km . Calculate the distance on the map which it represents it in cm .
(c) The area of a lake on the map is represented by $200 \mathrm{~cm}^{2}$. Calculate the actual area of it in km^{2}.
(d) The actual area of the airport is $3 \mathrm{~km}^{2}$. Calculate its area on the map in cm^{2}.

2 Commercial Arithmetic

（ア）Profit and Loss

Profit／Loss＝Income - Cost If the answer is positive，it＇s a profit．
If the answer is negative，it＇s a loss．
Example 1．A man bought 100 loaves of bread at K3 000 each．He sold half of them at K3 500 each and the rest at K2 700 each．Find his profit or loss．

Cost $=100 \times 3000=\mathrm{K} 300000$
Income $=50 \times 3500+50 \times 2700=\mathrm{K} 310000$
Profit $/$ Loss $=310000-300000=$ K10 000 profit

（イ）Discount

A discount is a reduction in price．
Example 2 Calculate how much is paid for a television set costing K800 000 if 7\％ discount is allowed．

Discount $=\frac{7}{100} \times 800000=K 56000$
Customer pays $800000-56000=$ K744 000

（ウ）Simple Interest

Interest is money paid for borrowing a sum of money which is called the principal．It is expressed as a percentage rate per annum．

$$
I=\frac{P R T}{100}
$$

where I is the simple interest，P is the principal，R is the rate of interest（as a percentage）and T is the time（in years）．When interest is added to the principal，the sum is called the amount．The amount $A=P+I$

Example 3 If a person invests K5 000000 at the rate of 8% per annum for 2 year． Calculate：（a）the simple interest（b）the amount
（a）$I=\frac{P R T}{100}=\frac{5000000 \times 8 \times 2}{100}=\mathrm{K} 800000$
（b）$A=P+I=5000000+800000=\mathrm{K} 5800000$

Example 4 K250 000 earns K10 000 interest in 6 months．Calculate the interest rate．

$$
\begin{aligned}
& 6 \text { months }=\frac{6}{12} \text { year }=\frac{1}{2} \text { year } \\
& \therefore R=\frac{I \times 100}{P T}=\frac{10000 \times 100}{250000 \times \frac{1}{2}}=8 \%
\end{aligned}
$$

Exercise 2

1 A bookseller bought 10 copies of a book at K45 000 each．He sold 9 copies at K52 000 per copy and the rest at K40 000 per copy．Find the profit or loss．
2 During a sale，a shop gives 5% discount．
（a）What is the new price of an article priced at K120 000？
（b）What is the original price of an article sold for K28 500？
3 A man borrows K1 200000 at 9.5% for 8 months．How much does he have to repay？
4 If K832 000 is the total value of an investment at the end of 4 years which has a simple interest rate of 7% per annum，calculate the principal．
5 Find the interest rate if the simple interest on K250 000 invested for 6 years is K120 000.

3 Indices, Standard Form and Approximations

 (ア) IndicesIndices indicate how many times a number is multiplied by itself.
e.g. $2 \times 2 \times 2=2^{3}$

The 3 is the power or index of the base 2 .

Laws of indices: for any real number a,

(a) $a^{1}=a$ Any number to the power 1 is itself. e.g. $5^{1}=5$
(b) $a^{0}=1$ Any number to the power 0 is 1 . e.g. $10^{0}=1$
(c) $a^{-n}=\frac{1}{d^{n}}$ A negative power indicates the reciprocal of the number with a positive power. e.g. $10^{-2}=\frac{1}{10^{2}}\left(=\frac{1}{100}=0.01\right)$ Further, $\left(\frac{a}{b}\right)^{-n}=\frac{1}{\left(\frac{a}{b}\right)^{n}}=\left(\frac{b}{a}\right)^{n}$
(d) $a^{m} \times a^{n}=a^{n+n}$ To multiply powers of the same base, add the powers.
e.g. $3^{2} \times 3^{4}=3^{2+4}=3^{6}$ because $3^{2} \times 3^{4}=(3 \times 3) \times(3 \times 3 \times 3 \times 3)=3^{6}$
(e) $a^{m} \div a^{n}=\frac{a^{m}}{a^{n}}=a^{n}{ }^{n-n}$

To divide powers of the same base, subtract the
powers.
e.g. $3^{5} \div 3^{2}=3^{5-2}=3^{3}$ because $3^{5} \div 3^{2}=(3 \times 3 \times 3 \times 3 \times 3) \div(3 \times 3)=3^{3}$
(f) $\left(a^{m}\right)^{n}=d^{m \times n}$ To raise a power to a power, multiply the powers.
e.g. $\left(5^{2}\right)^{3}=5^{2 \times 3}=5^{6}$ because $\left(5^{2}\right)^{3}=5^{2} \times 5^{2} \times 5^{2}=5^{2+2+2}=5^{6}$
(g) $(a \times b)^{n}=a^{n} \nrightarrow b^{n}$ To raise a product to a power, raise each number to the power.
e.g. $(3 \times 5)^{2}=3^{2} \times 5^{2}$
$(3 \times 5)^{2}=15^{2}=225$ and $3^{2} \times 5^{2}=9 \times 25=225$
h) $\left(\frac{a}{b}\right)^{n}=\frac{d^{n}}{b^{n}}$ To raise a quotient to a power, raise each number to the power.
e.g. $\left(\frac{3}{4}\right)^{2}=\frac{3^{2}}{4^{2}}$ because $\frac{3}{4} \times \frac{3}{4}=\frac{9}{16}$ and $\frac{3^{2}}{4^{2}}=\frac{9}{16}$
(i) $\mathrm{a}^{\frac{1}{n}}=\sqrt[n]{9}$ A fractional power indicates a root.
e.g. $8^{\frac{1}{3}}=\sqrt[3]{8}=2$ because $8^{\frac{1}{3}} \times 8^{\frac{1}{3}} \times 8^{\frac{1}{3}}=8^{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}=8^{1}=8$ and $2 \times 2 \times 2=8$

Further, $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$ or $\sqrt[n]{a^{m}}$
Example $\ldots 1$ Find
the
value
of
(a) 4^{-2} (b) $\left(\frac{2}{3}\right)^{-2}$ (c) $2^{3} \times 2^{5} \div 2^{6}$ (d) $27^{\frac{1}{3}}$ (e) $(-8)^{\frac{2}{3}}$
$\begin{array}{ll}\text { (a) } 4^{-2}=\frac{1}{4^{2}}=\frac{1}{16} & \text { (b) }\left(\frac{2}{3}\right)^{-2}=\left(\frac{3}{2}\right)^{2}=\frac{3^{2}}{2^{2}}=\frac{9}{4}\left(=2 \frac{1}{4}\right)\end{array}$
(c) $2^{3} \times 2^{5} \div 2^{6}=2^{3+5-6}=2^{2}=4$
(d) $27^{\frac{1}{3}}=\sqrt[3]{27}=3$ or $\left(3^{3}\right)^{\frac{1}{3}}=3^{3 \times \frac{1}{3}}=3^{1}=3$
(e) $(-8)^{\frac{2}{3}}=(\sqrt[3]{-8})^{2}=(-2)^{2}=4$ or $\left\{(-2)^{3}\right\}^{\frac{2}{3}}=(-2)^{3 \times \frac{2}{3}}=(-2)^{2}=4$

(1) Standard Form

Standard form is a method of expressing numbers in the form $a \times 10^{n}$, where $1 \leq a<10$ and n is an integer. i.e. A number with one digit before the decimal point. Example 2 Express in standard form: (a) 452 (b) 0.000268
(a) $452=4.52 \times 100=4.52 \times 10^{2}$
(b) $0.00268=2.68 \times 0.001=2.68 \times 10^{-3}$

Example 3 Express as a decimal: (a) 6.45×10^{3} (b) 1.07×10^{-2}
(a) $6.45 \times 10^{3}=6.45 \times 1000=6450$
(b) $1.07 \times 10^{-2}=1.07 \times \frac{1}{100}=0.0107$

(ウ) Approximations

An approximation is a stated value of a number which is close to (but not equal to) the true value of that number.
e.g. $3.14,3.142$ and $\frac{22}{7}$ are all approximations to $\pi(=3.14159265358979 \ldots)$

Rounding off: is the process of approximating a number.

To round off a number, find the place in the number where the rounding off must be done and look at the digit to the right.

- If this is 5 or greater, add 1 to the rounded off digit.
- If this is 4 or less, leave the rounded off digit the same.

To a number of decimal places (dp): indicates that rounding off has been done to leave only the number of digits required after the decimal point.
e.g. $\pi=3.14$ (to 2 dp) $\pi=3.142$ (to 3 dp)

Example 4 Round off 3.0463 correct to: (a) 3 dp (b) 2 dp (c) 1 dp
(a) $3.0463=3.046$ to 3 dp
(b) $3.0463=3.05$ to 2 dp
(c) $3.0463=3.0$ to 1 dp

To a number of significant figures (sf): indicates that rounding off has been done to leave only the number of significant figures required.
e.g. $\pi=3.14$ (to 3 sf) $\pi=3.1416$ (to 5 sf)

Example 5 Round off 13507 correct to: (a) 1 sf (b) 2 sf (c) 3 sf (d) 4 sf
(a) $13507=10000$ to 1 sf
(b) $13507=14000$ to 2 sf
(c) $13507=13500$ to 3 sf
(d) $13507=13510$ to 4 sf

Exercise 3

1 Simplify: (a) $x^{\frac{1}{2}} \times x^{\frac{-1}{3}}$ (b) $x^{-2} \times x^{\frac{1}{2}} \div x^{\frac{-3}{2}}$
2 Find
the
value
of:
(a) $(-5)^{-3}$ (b) $\left(\frac{1}{2}\right)^{-2}$ (c) $5^{6} \times 5^{-1} \div 5^{3} \times 10^{0} \quad$ (d) $4^{2.5} \times 4^{-1}$
(e) $\left(-\frac{8}{27}\right)^{\frac{2}{3}}$ (f) $25^{-\frac{1}{2}}$ (g) $\frac{1}{16^{-\frac{3}{4}}}$

3 Express in standard form: (a) 703 (b) 8405.2 (c) 0.072 (d) 0.000375
4 Express 2.9735 correct to: (a) 1 dp (b) 2 dp (c) 3 dp
5 Express 40.974 correct to: (a) 1 sf (b) 2 sf (c) 3 sf (d) 4 sf

4 Sets

A set is a collection of well defined objects (numbers, letters, symbols and so on).

(ア) Set Notation and Presentation

A set is denoted by a capital letters (such as A). The objects of a set are enclosed in curly brackets, $\}$ and separated by commas.
e.g. $V=\{a, e, i, o, u\}$

It is not necessary to list every object in the set. Instead, the rule which the objects
follow can be given in the curly brackets.
e.g. $\mathrm{V}=$ \{vowels in English $\}$

Elements or members: are objects which belong to a set.
The symbol \in means "is an element of" or "is a member of". The symbol \notin means "is not an element of" or "is not a member of".
e.g. $3 \in\{$ odd numbers $\}, 3 \notin\{$ even numbers $\}$

Universal set: is the set which contains all the elements under discussion.
The universal set is denoted by E .
e.g. If $\mathrm{V}=\{$ vowels $\}$ and $\mathrm{C}=\{$ consonants $\}$ are given, $\mathrm{E}=\{$ alphabet $\}$

Empty set: is the set which has no elements.
An empty set is denoted by $\}$ or φ.
e.g. $\{$ triangles with more than three sides $\}=\{ \}$ or φ

Finite and infinite set: A finite set is a set which contains a limited number of elements. An infinite set is a set which contains an unlimited number of elements.
e.g. $\{$ letters of the English alphabet $\}=\{a, b, c, \ldots, x, y, z\}$ This set is a finite set. $\{$ natural numbers $\}=\{1,2,3,4, \ldots\}$ This set is an infinite set.

Number of elements: If a set A is a finite set, the number of elements in the set A is denoted by $\mathrm{n}(\mathrm{A})$.
e.g. If $A=\{$ letters of the English alphabet $\}, n(A)=26$

Subset: is a set which also belongs to another set.
The symbol \subset means "is a subset of".
e.g. If $\mathrm{V}=\{$ vowels $\}$ and $\mathrm{A}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}\}, \mathrm{A} \subset \mathrm{V}$.

The number of subsets of a set is 2^{n} where n is the number of elements in the set.
e.g. A set with 3 elements has $2^{3}=8$ subsets.
\because If $A=\{a, b, c\}$, subsets of A are $\{a, b, c\},\{a, b\},\{a, c\},\{b, c\},\{a\},\{b\},\{c\}$ and $\}$

(イ) Operations on Sets

Intersection of sets: is the set of elements common to all the original sets.
The intersection is represented by the symbol \cap.
e.g. If $\mathrm{A}=\{1,2,3,4,5\}$ and $\mathrm{B}=\{2,4,6\}, \mathrm{A} \cap \mathrm{B}=\{2,4\}$

Union of sets: is the set of all the elements of the original sets.
The union is represented by the symbol \cup.
e.g. If $\mathrm{A}=\{1,2,3,4,5\}$ and $\mathrm{B}=\{2,4,6\}, \mathrm{A} \cup \mathrm{B}=\{1,2,3,4,5,6\}$

Complement of a set: is the set of all elements which are not in that set but are in the universal set originally given.
The complement is represented by the symbol '.
e.g. If $\mathrm{E}=\{$ natural numbers less than 10$\}$ and $\mathrm{A}=\{$ prime numbers $\}$,

$$
\mathrm{A}^{\prime}=\{1,4,6,8,9\} \quad(\because \mathrm{A}=\{2,3,5,7\})
$$

Venn diagrams: are used to show the relationships between sets.
In a Venn diagram, the universal set is represented by a rectangle and sets by circles or simple closed curves. Elements of a set are often represented by points in the circle.

Venn diagrams of some common set relationships
The considered parts are shaded.

Set A

,

Universal set E

$A \cap B$
Intersection of A and B

$A \cup B$

Union of A and B

A'
Complement of A

Combined operations

Example 1 For two sets A and $B, n(A)=6, n(B)=4$ and $n(A \cup B)=8$. Find $n(A \cap B)$
$\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})=6+4=10$ which is 2 more than $n(A \cup B)$.

Therefore 2 elements are counted twice, which means that $n(A \cap B)=2$.

In general, $n(A \cap B)=n(A)+n(B)-n(A \cup B)$

Example 2 If $\mathrm{E}=\{1,2,3,4,5,6,7\}, \mathrm{A}=\{1,3,5,7\}, \mathrm{B}=\{1,2,3\}$ and
$C=\{2,3,5,7\}$, list the elements of: (a) $\mathrm{B}^{\prime} \cap \mathrm{C}$ (b) $\mathrm{A} \cap \mathrm{C}^{\prime}$ (c) $(\mathrm{A} \cup C)^{\prime}$
(a) $\mathrm{B}^{\prime}=\{4,5,6,7\}$ so $\mathrm{B}^{\prime} \cap \mathrm{C}=\{5,7\}$
(b) $\mathrm{C}^{\prime}=\{1,4,6\}$ so $\mathrm{A} \cap \mathrm{C}^{\prime}=\{1\}$
(c) $\mathrm{A} \cup \mathrm{C}=\{1,2,3,5,7\}$ so $(\mathrm{A} \cup \mathrm{C})^{\prime}=\{4,6\}$

Example 3 Shade the region $A \cap(B \cup C)^{\prime}$ on the Venn diagram.
$B \cup C$ is shaded in Fig 1. Then $(B \cup C)^{\prime}$ is shaded in Fig 2. So $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})^{\prime}$ is the shaded
 region in Fig 3.

Fig 1

Fig 2

Fig 3

Example 4 If $\mathrm{n}(\mathrm{E})=30$ and $\mathrm{n}(\mathrm{A})=14$, find x and y.

$$
\mathrm{n}(\mathrm{~A})=x+4+2+3=14 \quad \therefore x=5
$$

$$
\begin{aligned}
& \mathrm{n}(\mathrm{E})=14+3+y+6+5=30(\because \mathrm{n}(\mathrm{~A})=14) \\
& \therefore y=2
\end{aligned}
$$

Exercise 4

$1 \mathrm{E}=\{$ natural numbers less than 10$\}, \mathrm{A}=\{$ prime numbers $\}, \mathrm{B}=\{$ odd numbers $\}$ and $\mathrm{C}=\{$ multiples of 3$\}$. List the elements of (a) A^{\prime} (b) $\mathrm{A} \cap \mathrm{B}$ (c) $\mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}$ (d) $A \cup(B \cap C)$

2 If $n(A)=7$ and $n(B)=5$, what are the largest and smallest possible values of $n(A \cup B)$ and $\mathrm{n}(\mathrm{A} \cap \mathrm{B})$?
3 A, B and C are three intersecting sets. On separate Venn diagrams, shade the region
(a) $(A \cup B) \cap C$ (b) $(A \cap C) \cup B$ (c) $A^{\prime} \cap(B \cup C)$
(d) $A \cap B \cap C$
(e) $\mathrm{A}^{\prime} \cap \mathrm{B} \cap \mathrm{C}^{\prime}$

4 If $n(E)=55, n(A)=25, n(B)=22, n(C)=22, n(A \cap B)=8, n(B \cap C)=7$, $n(A \cap C)$ $=5$ and $n(A \cap B \cap C)=3$, illustrate this information in a Venn diagram.

5 Basic Algebra

1.1 Algebraic Expression

An expression can contain any combination of letters or numbers, and often involves the arithmetic operations.
e.g. $2 x, 6 x-5,10+y, x+y, 3(x-y), 3 x^{2}+4 y$

Variable: is unknown number or quantity represented by a letter (usually such as x, y).
Constant: is a value which is always the same.
e.g. In an expression $y=x+3,3$ is a constant.

Coefficient: is a constant which is placed in front of a variable.
e.g. In an expression $x+2 y$, the coefficient of x is 1 and the coefficient of y is 2 .
(The absence of a coefficient is equivalent to a 1 being present.)
Terms: are the parts which are separated by a + or - sign.
e.g. An expression $2+3 x-4 x y+5 x^{2}$ has 4 terms ($2,3 x,-4 x y$ and. $5 x^{2}$)

Like terms: are terms which contain exactly the same variables and same indices.
They can be collected together by addition or subtraction.
e.g. pairs of like terms are $2 x$ and $5 x ; 5 x y^{2}$ and $3 x y^{2}, 2 x+5 x=7 x ; 5 x y^{2}-3 x y^{2}=2 x y^{2}$

Unlike terms: are terms which contain different variables or different indices.
They cannot be added or subtracted.
e.g. pairs of unlike terms are x and $x^{3} ; x y^{2}$ and $x^{2} y$

Simplification: is combining the terms in an algebraic expression.
Addition and subtraction: Expressions involving addition and subtraction can be simplified by adding or subtracting like terms.
e.g. $3 x^{2}+2 x+5 y-2 y+3 x+4 x^{2}=\left(3 x^{2}+4 x^{2}\right)+(2 x+3 x)+(5 y-2 y)=7 x^{2}+5 x+3 y$

Multiplication: Expressions involving multiplication can be simplified by multiplying out the terms.
e.g. $4 x \times 3 y=4 \times 3 \times x \times y=12 x y$

Division: Expressions involving division can be simplified by cancelling out the terms.
e.g.

$$
6 x^{3} y^{2} \div 2 x y=\frac{3}{\frac{6}{2}} x^{3-1} y^{2-1}=3 x^{2} y
$$

$\left(6 x^{3} y^{2} \div 2 x y=\frac{3{ }^{1} \underset{1}{6 x \times x \times y \times y}}{2 x y}=3 x^{2} y\right)$
Substitution: is the replacement of the letters in an expression with specific values. Example 1 Given that $a=3, b=-5$ and $\mathrm{c}=4$, find the value of: (a) $a b^{2}$ (b) $a-b-c^{2}$
(a) $a b^{2}=3 \times(-5)^{2}=3 \times 25=75$
(b) $a-b-c^{2}=3-(-5)-4^{2}=3+5-16=-8$

Expansion: is removing brackets from an expression by the term immediately before the brackets with every term within them. The distributive law is applied.
e.g. $a(b+c)=a b+a c$

An important type of expansion involves a double set of brackets.
Example 2 Expand $(x+3)(2 x-5)$
To expand this expression, multiply each term in the first set of brackets with each term in the second set of brackets.

$$
\begin{aligned}
& \left.\begin{array}{r}
\stackrel{\rightharpoonup}{\mathbf{v}} \boldsymbol{\vee} \\
(x+3)(2 x-5 \\
\mathbf{N}
\end{array}\right)=x \times 2 x+x \times(-5)+3 \times 2 x+3 \times(-5) \\
& =2 x^{2} \hat{f} 5 x+6 x-15 \\
& =2 x^{2}+x-15
\end{aligned}
$$

1.2 Factorisation

An algebraic expression can be factorised if each term contains one or more common factors. It is written as a product of its factors.

Example 3 Factorise $4 x^{2}-12 x$
4 and x are the only common factors. Divide the common factor ($4 x$) into each term. $4 x^{2} \div 4 x=x,-12 x \div 4 x=-3$
And write the resulting expression in the brackets.
$4 x^{2}-12 x=4 x(x-3)$

Check the answer by expansion.
$4 x(x-3)=4 x \times x+4 x \times(-3)=4 x^{2}-12 x$, so the solution is correct.
Example 4 Factorise $3 a x+6 a b+4 x+8 b$
There is no common factor to all the four terms. Take them in pairs.
$3 a x+6 a b+4 x+8 b=3 a(x+2 b)+4(x+2 b)$
($\because 3 a$ is the common factor to the first two terms and 4 is the common factor to the last two terms.)
Now $(x+2 b)$ is the common factor. \therefore expression $=(x+2 b)(3 a+4)$
Factorisation of quadratic expressions: A quadratic expression $\left(a x^{2}+b x+c\right)$ can be factorised into two pairs of brackets by using the following method.

Step 1: find the product of a and c.

Step 2: find the factors of the product of a and c, whose sum is b.
Step 3: express the term $b x$ as a sum of terms, using the factors in step 2.
Step 4: factorise by grouping terms with common factors.
Example 5 Factorise $x^{2}+5 x+6$
The product is $1 \times 6=6$ and the sum is 5 .
6 could be 1×6 or 2×3.
$2+3=5(1+6=7 \neq 5)$ so the factors are 2 and 3 .

p	6
s	5
f	2,3

$x^{2}+5 x+6=x^{2}+2 x+3 x+6=x(x+2)+3(x+2)=(x+2)(x+3)$
Only if the coefficient of x^{2} is 1 , the expression can be factorised directly by using the factors.

$$
x^{2}+(a+b) x+a b=(x+a)(x+b)
$$

Example 6 Factorise $3 x^{2}-x-10$
The product is $3 \times(-10)=-30$ and the sum is -1 .
30 could be $1 \times 30,2 \times 15,3 \times 10$ or 5×6.
Now the product is negative, so one factor is positive

p	-30
s	-1
f	$-6,5$

$-6+5=-1$ so the factors are -6 and 5
$3 x^{2}-x-10=3 x^{2}-6 x+5 x-10=3 x(x-2)+5(x-2)=(x-2)(3 x+5)$
Always check the answer by expansion.
$(x-2)(3 x+5)=x \times 3 x+x \times 5-2 \times 3 x-2 \times 5=3 x^{2}+5 x-6 x-10=3 x^{2}-x-10$

Difference of two squares: is an expression of the form $a^{2}-b^{2}$ which can be factorised to $(a+b)(a-b) . a^{2}=b^{2}=(a+b)(a-b)$
Example 7 Factorise $4 x^{2}-9$

$$
4 x^{2}-9=(2 x)^{2}-3^{2}=(2 x+3)(2 x-3)
$$

1.3 Algebraic Fractions

A fraction which contains at least one letter is called an algebraic fraction.
Algebraic fractions can be simplified to their lowest terms by factorising both the denominator and numerator.

Example 8 Simplify: (a) $\frac{x^{2}}{4 x+x y}$ (b) $\frac{x+1}{x^{2}+3 x+2}$
(a) $\frac{x^{2}}{4 x+x y}=\frac{x^{2}}{x(4+y)}=\frac{x}{4+y}$
(b) $\frac{x+1}{x^{2}+3 x+2}=\frac{x+1}{(x+1)(x+2)}=\frac{1}{x+2}$

Addition and subtraction: Algebraic fractions can be added or subtracted in exactly the same way as arithmetical fractions by expressing them as fractions with the lowest common multiple (LCM) as the common denominator.

Example 9 Express as a single fraction and simplify where possible.
(a) $\frac{x+1}{3}+\frac{x+3}{2}$
(b) $\frac{3}{x-2}-\frac{2}{x-3}$
(c) $\frac{1}{x^{2}+3 x+2}+\frac{2 x}{x^{2}-4}+\frac{1}{x^{2}-x-2}$
(a) The LCM of 3 and 2 is 6 .

$$
\frac{x+1}{3}+\frac{x+3}{2}=\frac{2(x+1)}{6}+\frac{3(x+3)}{6}=\frac{2 x+2+3 x+9}{6}=\frac{5 x+11}{6}
$$

(b) The LCM of $(x-2)$ and $(x-3)$ is $(x-2)(x-3)$.

$$
\begin{aligned}
\frac{3}{x-2}-\frac{2}{x-3} & =\frac{3(x-3)}{(x-2)(x-3)}-\frac{2(x-2)}{(x-2)(x-3)}=\frac{3(x-3)-2(x-2)}{(x-2)(x-3)} \\
& =\frac{3 x-9-2 x+4}{(x-2)(x-3)}=\frac{x-5}{(x-2)(x-3)}
\end{aligned}
$$

(c) First factorise the denominators each and then find the LCM.

$$
\begin{aligned}
& x^{2}+3 x+2=(x+1)(x+2) \\
& x^{2}-4=(x+2)(x-2) \\
& x^{2}-x-2=(x+1)(x-2) \\
& \therefore \text { The LCM }=(x+1)(x+2)(x-2) \\
& \frac{1}{(x+1)(x+2)}+\frac{2 x}{(x+2)(x-2)}+\frac{1}{(x+1)(x-2)} \\
& =\frac{1 \times(x-2)}{(x+1)(x+2)(x-2)}+\frac{2 x \times(x+1)}{(x+1)(x+2)(x-2)}+\frac{1 \times(x+2)}{(x+1)(x+2)(x-2)} \\
& =\frac{x-2+2 x^{2}+2 x+x+2}{(x+1)(x+2)(x-2)}=\frac{2 x^{2}+4 x}{(x+1)(x+2)(x-2)}=\frac{\frac{2 x(x+2)}{(x+1)(x+2)(x-2)}}{=} \frac{2 x}{(x+1)(x-2)}
\end{aligned}
$$

Multiplication and division: Algebraic fractions can be multiplied or divided in exactly the same way as arithmetical fractions.

Example 10 Simplify where possible.
(a) $\frac{2 z}{x y} \times \frac{y}{4 z}$
(b) $\frac{4}{a+b} \times \frac{a^{2}-b^{2}}{12}$
(c) $\frac{x y}{6} \div \frac{y}{3 x}$
(d) $\frac{x^{2}-4}{3 x^{2}-6 x} \div \frac{x^{2}+x-2}{9 x^{2}}$
(a) $\frac{2 z}{x y} \times \frac{y}{4 z}=\frac{2 \neq \times y}{x y \times \underset{2}{4 \neq}}=\frac{1}{2 x}$
(b) First $a^{2}-b^{2}$ is factorised to $(a+b)(a-b)$

$$
\frac{4}{a+b} \times \frac{(a+b)(a-b)}{12}=\frac{4 \times(a+b)(a-b)}{(a+b) \times 12}=\frac{a-b}{3}
$$

(c) First convert division to multiplication.

$$
\frac{x y}{6} \div \frac{y}{3 x}=\frac{x y}{6} \times \frac{3 x}{y}=\frac{x y \times \mathfrak{B x}}{6 \times y}=\frac{x^{2}}{2}
$$

(d) Convert division to multiplication and factorise.

$$
\begin{aligned}
& \frac{x^{2}-4}{3 x^{2}-6 x} \div \frac{x^{2}+x-2}{3 x^{2}}=\frac{(x+2)(x-2)}{3 x(x-2)} \times \frac{9 x^{2}}{(x+2)(x-1)} \\
& =\frac{(x+2) \times 9 x^{2}}{3 x \times(x+2)(x-1)}=\frac{3 x}{x-1}
\end{aligned}
$$

Exercise 5

1 Expand and simplify where possible: (a) $2 x(3 \mathrm{x}-\mathrm{y}) \quad$ (b) $3(3 x-y)-4(4 y+x)$ (c) $(a+5)(a-2)(\mathrm{d})(x-2 y)(3 x+4 y)\left(\right.$ e) $(2 a-3 b)^{2}(\mathrm{f})\left(2 x-\frac{1}{x}\right)^{2}$

2 Factorise completely: (a) $3 x^{2}-6 x$ (b) $3 a c-6 a d-2 b c+4 b d$ (c) $x^{2}+3 x+2$
(d) $x^{2}+6 x+9$
(e) $x^{2}-4 x-21$ (f) $2 x^{2}-5 x-3$
(g) $12 x^{2}-5 x y-2 y^{2}$
(h) $49-16 x^{2}$ (i) $a^{2} b^{2}-4 c^{2}$ (j) $s t^{2}-4 s+2 t^{2}-8$

3 Simplify: (a) $\frac{x y z}{x y z^{2}}$ (b) $\frac{3 x^{2}+10 x-8}{6 x^{2}-13 x+6}$ (c) $\frac{2-a}{a^{2}-4}$ (d) $\frac{1}{2 a}+\frac{2}{a}$
(e) $\frac{1}{x+y}+\frac{1}{x-y}$ (f) $\frac{1}{x-2}-\frac{1}{2 x^{2}-7 x+6}$ (g) $\frac{2 x-2 y}{9} \times \frac{3}{y-x}$
(h) $\frac{x+1}{x^{2}-7 x+12} \times \frac{2 x-8}{x^{2}+2 x+1}$ (i) $\frac{x^{2}+4 x y+3 y^{2}}{x y} \div \frac{x+y}{y}$

6 Equations

An algebraic equation is a mathematical statement that two algebraic expressions are equal. An equation is solved by finding the value of the unknown variable(s). Any value of the variable(s) that satisfies the equation is a solution.

1.4 Rearranging an Equation (Changing the subject of an equation)

Expressions in an equation can be rearranged so that one of the terms is on its own to the left of the equal sign $(=)$. Then the equation can be solved for that term.

Example 1 Rearrange for x. (a) $x+4 y=3$ (b) $y=\frac{2 x-1}{x-3 z}$
(a) Leave x on the left side and move $4 y$ to the right side. $\therefore x=3-4 y$
(b) Remove the denominator $(x-3 z)$ by multiplying both sides by it. $y(x-3 z)=2 x-1$ i.e. $x y-3 y z=2 x-1$
Collect the x terms by themselves on the left side.
$x y-2 x=-1+3 y z$ i.e. $x(y-2)=3 y z-1$
Divide both sides by $(y-2) . \therefore x=\frac{3 y z-1}{y-2}$

(ア)Linear Equations

A linear equation is an equation involving an expression of the first degree (the highest power of variables is 1).
Linear equations in one variable: A linear equation in one variable x can be written in the form $a x+b=0$, where $a \neq 0$. e.g. $x+2=7,3 x+2=5$
To solve a linear equation in one variable, rearrange and solve it for that variable.
Example 2 Solve for x : (a) $2 x-1=x+3$ (b) $7(x+3)-2(x-4)=4$
(c) $\frac{x-5}{2}-\frac{3 x+1}{5}=-3$ (d) $\frac{3}{2 x}-\frac{1}{x}=\frac{1}{4}$
(a) Collect like terms. $2 x-x=3+1 \quad \therefore x=4$

Check the answer by substituting it into each side of the original equation.
Left side $=2 \times 4-1=8-1=7$ Right side $=4+3=7$
As left side $=$ right side, the answer is correct.
(b) First expand. $7 x+21-2 x+8=4$

Then collect like terms and simplify. $5 x=4-29 \quad 5 x=-25$
Divide both sides by 5. $x=-5$
(c) First remove fractions by multiplying the LCM (10).

$$
10 \times \frac{x-5}{2}-10 \times \frac{3 x+1}{5}=10 \times(-3) \quad 5(x-5)-2(3 x+1)=-30
$$

Then expand, collect like terms and simplify.
$5 x-25-6 x-2=-30 \quad-x=-30+27 \quad-x=-3 \quad \therefore x=3$
(d) Remove fractions by multiplying the LCM (4x).

$$
4 x \times \frac{3}{2 x}-4 x \times \frac{1}{x}=4 x \times \frac{1}{4} \quad 6-4=x \quad \therefore x=2
$$

Linear equations in two variables: A linear equation in two variables x and y can be written in the form $a x+b y+c=0$, where a and b are not equal to 0 .
e.g. $x-y=3,2 x+y=5,2 x-4 y-9=0$

These equation have an infinite number of pairs of values of x and y which satisfy the equations.

Simultaneous equations of linear equations in two variables: are pairs of linear equations in which the two variables represent the same numbers in each equation. To solve simultaneous equations, find a solution which satisfies both equations.
There are mainly two methods to solve simultaneous equations.
(i) Substitution method
(ii) Elimination method

Unless the question asks for a specific method, you are free to use any method you prefer.
Substitution method: One variable is expressed in terms of the other in either of the given equations and this expression is substituted into the other equation.
Example 3 Solve: $2 x-y=5$

$$
x-2 y=4
$$

Rearrange the second equation to solve for $x, x=4+2 y$
Substitute this expression for x into the first equation. $2(4+2 y)-y=5$
Expand, collect like terms and simplify.

$$
8+4 y-y=5 \quad 3 y=5-8=-3 \quad \therefore y=-1
$$

Substitute the value of y into the rearranged equation. $x=4+2 \times(-1)=4-2=2$
The solution is $x=2, y=-1$
Check the solution by substituting it into the other equation.
Left side $=2 x-y=2 \times(2)-(-1)=4+1=5=$ Right side, so the solution is correct.
Elimination method: One variable is eliminated in order to leave only the other variable.
Example 4 Solve: (a) $2 x-3 y=4$ (b) $x+4 y=7$ (c) $2 x-y=5$

$$
x+3 y=11 \quad x+2 y=3 \quad x-4 y=6
$$

(a) Now the coefficients of y are opposite (-3 and 3), add the equations.

$$
2 x-3 y=4
$$

$$
\left.\frac{x) 3 y=11}{(2 x+x)+(-3 y}+3 y\right)=4+11 \quad 3 x=15 \quad \therefore x=5
$$

Substitute 5 for x into either of the equation (now the second equation).

$$
5+3 y=11 \quad 3 y=11-5=6 \quad \therefore y=2
$$

The solution is $x=5, y=2$.
Always Check the solution by substituting it into the other equation.
Left side $=2 \times 5-3 \times 2=10-6=4=$ Right side, so the solution is correct.
(b) Now the coefficients of x are equal (1 and 1), subtract one equation from the other.

$$
x+4 y=7
$$

$\frac{-x) 2 y=3}{(x-x)+(4 y-2 y)=7-3 \quad 2 y=4 \quad \therefore y=2}$
Substitute 2 for y into either of the equation (now the second equation).

$$
x+2 \times 2=3 \quad x=3-4=-1
$$

$$
\text { The solution is } x=-1, y=2
$$

(c) If the coefficients are not equal or opposite, find the LCM of the coefficients of one of the variables and make them the same in each equation.
Now choose x, the LCM of 1 and 2 is 2 . Multiply the second equation by 2 .

$$
2 \times(x-4 y=6) \quad 2 x-8 y=12
$$

The coefficients of x are equal (2 and 2), subtract one equation from the other.
$2 x-y=5$
$-2 x)-8 y=12$

$$
(2 x-2 x)+(-y-(-8 y))=5-12 \quad 7 y=-7 \quad \therefore y=-1
$$

Substitute -1 for y into either of the equation (now the second equation).

$$
x-4 \times(-1)=6 \quad x=6-4=2
$$

The solution is $x=2, y=-1$

(イ) Quadratic Equations

A quadratic equation in one variable x can be written in the form $a x^{2}+b x+c=0$, where a, b and c are real numbers and $a \neq 0$. e.g. $x^{2}+3 x+2=0, x^{2}-4=0$
The solutions of a quadratic equation are called roots. Quadratic equations will always have two roots which may be equal.

There are three methods to solve quadratic equations.
(i) Factorisation method
(ii) Completing the square method
(iii) Formula method

Factorisation method: involves factorising the equation to give two expressions in brackets. In general, given $a b=0$, we can say $a=0$ or $b=0$. So by taking each bracket at a time, the two possible solutions can be found. Not all quadratic equations can be solved by factorisation method.

$$
\text { Example } 5 \text { Solve: (a) } x^{2}-5 x=0 \text { (b) } x^{2}-3 x+2=0
$$

(a) Factorise the left side. $x(x-5)=0$

Since the product of the factors is 0 , one of the factors must be 0 .

$$
x=0 \text { or } x-5=0
$$

Therefore the roots are $x=0$ or $x=5$.
Check the solutions by substituting them into the original equation.
When $x=0$, Left side $=0^{2}-5 \times 0=0-0=0=$ Right side
When $x=5$, Left side $=5^{2}-5 \times 5=25-25=0=$ Right side So the solutions are correct.
(b) Factorise the left side. $(x-1)(x-2)=0$
(In the quadratic equation, the product is 2 and the sum is -3 ,
so factors are -1 and -2 .)
$x-1=0$ or $x-2=0$
Therefore the roots are $x=1$ or $x=2$.
This method should always be tried first. If it is not possible, then use either of the other two methods.

Completing the square method: is making the left side of a quadratic equation into a perfect square, the form $(x+a)^{2}$. This method can be used to solve any quadratic equation.
Example 6 Solve $x^{2}-4 x-1=0$
$x^{2}-4 x-1=0$ cannot be factorised.

Move the constant (-1) to the right side. $x^{2}-4 x=1$ (i)
Halve the coefficient of x and complete the square on the left side.

$$
\left(x-\frac{4}{2}\right)^{2}=(x-2)^{2}=x^{2}-4 x+4 \quad \therefore x^{2}-4 x=(x-2)^{2}-4
$$

So (i) becomes $(x-2)^{2}-4=1$ which gives $(x-2)^{2}=5$
Take the square root of both sides. $x-2= \pm \sqrt{5}= \pm 2.236$
So $x=2+2.236$ or $x=2-2.236$
Therefore $x=4.24$ (2 dp) or $x=-0.24$ (2 dp)
Formula method: is given by generalising the above method.
Take the general quadratic equation as $a x^{2}+b x+c=0$.
Divide both sides by $a . \quad x^{2}+\frac{b}{a} x+\frac{c}{a}=0$
Move the constant $\left(\frac{c}{a}\right)$ to the right side. $x^{2}+\frac{b}{a} x=-\frac{c}{a}$ (ii)
Now $\left(x+\frac{b}{2 a}\right)^{2}=x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}$

So (ii) becomes: $\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}=-\frac{c}{a}\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}=\frac{b^{2}-4 a c}{4 a^{2}}$
$\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}$
Then
$x+\frac{b}{2 a}= \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$
$\therefore x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Example 7 Solve $2 x^{2}-5 x+1=0$
Compare with $a x^{2}+b x+c=0: a=2, b=-5$ and $c=1$
Then $x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 2 \times 1}}{2 \times 2}=\frac{5 \pm \sqrt{17}}{4}=\frac{5 \pm 4.123}{4}$

$$
=\frac{9.123}{4} \text { or } \frac{0.877}{4}=2.28 \text { or } 0.22(2 \mathrm{dp})
$$

(ウ) Equations Involving Indices
There are two types of equations involving indices.
Equations of the form $\boldsymbol{x}^{a}=\boldsymbol{b}$: (where x is a variable and a and b are constants) can be solved by raising both sides of the equation to the reciprocal of the power a.

In general,, $x^{a}=b$
The reciprocal of a is $\frac{1}{a} \cdot\left(x^{a}\right)^{\frac{1}{a}}=b^{\frac{1}{a}} \quad x^{a \times \frac{1}{a}}=b^{\frac{1}{a}} \quad \therefore x=b^{\frac{1}{a}}$
Example 8 Solve: (a) $x^{3}=8$ (b) $x^{\frac{1}{2}}=3$ (c) $x^{\frac{-2}{3}}=16$
(a) The reciprocal of 3 is $\frac{1}{3} \cdot\left(x^{3}\right)^{\frac{1}{3}}=8^{\frac{1}{3}} \quad x^{3 \times \frac{1}{3}}=\left(2^{3}\right)^{\frac{1}{3}}$

$$
\therefore x=2^{3 \times \frac{1}{3}}=2^{1}=2 \quad\left(\text { or } x=8^{\frac{1}{3}}=\sqrt[3]{8}=2\right)
$$

(b) The reciprocal of $\frac{1}{2}$ is $2 .\left(x^{\frac{1}{2}}\right)^{2}=3^{2} \quad x^{\frac{1}{2} \times 2}=9 \quad \therefore x=9$
(c) The reciprocal of $-\frac{2}{3}$ is $-\frac{3}{2} \cdot\left(x^{\frac{-2}{3}}\right)^{\frac{-3}{2}}=16^{\frac{-3}{2}} x^{\frac{-2}{3} \times\left(\frac{-3}{2}\right)}=\left(4^{2}\right)^{\frac{-3}{2}}$

$$
\therefore x=4^{2 \times\left(\frac{-3}{2}\right)}=4^{-3}=\frac{1}{4^{3}}=\frac{1}{64}
$$

$$
\left.x=16^{\frac{-3}{2}}=\left(16^{\frac{1}{2}}\right)^{-3}=(\sqrt{16})^{-3}=4^{-3}\right)
$$

Equations of the form $\boldsymbol{a}^{\boldsymbol{x}}=\boldsymbol{b}$: (where x is a variable and a and b are constants) can be solved by expressing both sides of the equation in index form with same base, and equating the powers.
Example 9 Solve: (a) $2^{x}=8$ (b) $25^{x}=5$ (c) $27^{x}=\frac{1}{9}$
(a) Express both sides in index form with common base. $2^{x}=2^{3}$

Then equate powers. $x=3$
(b) $\left(5^{2}\right)^{x}=5^{1} \quad 5^{2 x}=5^{1} \quad 2 x=1 \quad \therefore x=\frac{1}{2}$
(c) $\left(3^{3}\right)^{x}=\frac{1}{3^{2}} \quad 3^{3 x}=3^{-2} \quad 3 x=-2 \quad \therefore x=-\frac{2}{3}$

(エ) Functions

A function is an operation that is applied to a given set (the domain) of values to give another set (the range) of values. Each element in the domain is related to only one element in the range. A function is represented by the letter f.
e.g. $f(x)=2 x$

Example 10 If $f(x)=2 x+3$, find: (a) $f(-2)$ (b) x when $\mathrm{f}(x)=5$
(a) Substitute -2 for x into the equation.

$$
f(-2)=2 \times(-2)+3=-4+3=-1
$$

(b) Substitute 5 for $f(x)$ into the equation and then solve for x.

$$
5=2 x+3 \quad 5-3=2 x \quad 2=2 x \quad \therefore x=1
$$

Notation

$y=f(x)$ is a way of expressing that there is a function of x which maps x-numbers onto y-numbers.
e.g. Given that $f(x)=2 x+3$, then $y=f(x)$ is the same as $y=2 x+3$
$f(x)=y$ is sometimes written as $f: x \rightarrow y$.
e.g. $f: x \rightarrow 2 x$ is the same as $f(x)=2 x$

Inverse functions: An inverse function is an operation that reverses a function. This is written as $f^{1}(x)$. i.e. If f maps x onto y, then f^{1} maps y onto x.
The inverse of a function can be found by rearranging an equation for x.

Example 11 Find: (a) the inverse function of $f(x)=\frac{3-5 x}{2}$ (b) $f^{1}(-1)$
(a) Let $y=f(x) . \quad y=\frac{3-5 x}{2}$

Rearrange for $x .2 y=3-5 x 5 x=3-2 y \quad \therefore x=\frac{3-2 y}{5}$

Exchange x and $y . y=\frac{3-2 x}{5}$
Let $y=f^{1}(x) . \therefore f^{-1}(x)=\frac{3-2 x}{5}$
(b) Substitute -1 for x into the equation. $f^{-1}(-1)=\frac{3-2 \times(-1)}{5}=\frac{5}{5}=1$

Exercise 6

1 Rearrange the following equations to make the subject the letter in brackets.
(a) $I=\frac{P R T}{100}[R]$
(b) $V=\frac{3}{4} \pi r^{3} \quad[r]$
(c) $p=\frac{q-t}{2 t}[t]$
$t]$ (d) $y=\sqrt{\frac{x+1}{3 x-2}}[x]$

2 Solve for x. (a) $10 x+3=4 x+6$ (b) $3(x-1)-(1-x)=-4$
(c) $\frac{4(x-2)}{5}-\frac{x+3}{2}=-\frac{1}{10}$ (d) $\frac{2}{3 x}-\frac{1}{2 x}=\frac{1}{4}$

3 Solve the simultaneous equations.
(a) $x+y=9$
$\begin{array}{ll}\text { (b) } 2 y-3 x=-22 & \text { (c) } x+2 y=0\end{array}$
(d) $2 x+3 y=4$
$y=2 x \quad x=4-y \quad x-3 y=2 \quad 3 x-2 y=-7$

4 Solve for x. Where necessary give the answers correct to 2 decimal places.
(a) $x^{2}=3 x$ (b) $x^{2}+5 x+6=0$ (c) $x^{2}-6 x=-9$ (d) $2 x^{2}-5 x-3=0$
(e) $3 x^{2}-x-1=0$ (f) $2 x^{2}+x=5$

5 Solve for x : (a) $x^{3}=-27$ (b) $x^{\frac{2}{3}}=4 \quad$ (c) $x^{4}=\frac{1}{16} \quad$ (d) $x^{-3}=8$
（e） $2^{x}=16$（f） $10^{x}=1$（g） $25^{x}=\frac{1}{5} \quad$（h）$\left(\frac{1}{16}\right)^{x}=8$
6 Given that $f(x)=\frac{2 x-3}{x}, x \neq 0$ ， find：（a）$f(-3)$（b）x when $f(x)=5$（c）an expression of $f^{1}(x)$（d）$f^{1}(-4)$

7 Coordinates and Graphs

（ア）Coordinate Systems

Cartesian coordinates：give the position of a point in a plane（two dimensions）by reference to two coordinates axes（the x－axis and the y－axis）at right angles The coordinates (x, y) describe the position of a point in terms of the distance of the point from the origin，$(0,0)$ ．i．e．The x－coordinate is the distance of the point from the origin，parallel to the x－axis and the y－coordinate is the distance of the point from the origin，parallel to the y－axis．The x－coordinate is always written first．

（イ）General Graph Terms

Gradient：is the rate at which y increases compared with x between any two points．
The gradient is usually written as m ．

A positive gradient slopes upward to the right．
A negative gradient slopes downward to the right．

\boldsymbol{x}－intercept：is the point where the line or curve cuts across the x－axis．At the x－intercept，$y=0$ ．
\boldsymbol{y}－intercept：is the point where the line or curve cuts across the y－axis．At the y－intercept，$x=0$ ．

（ウ）Straight Line Graphs

Constant graphs：are graphs in which the value of a variable is constant．
e．g．$\quad x=h \rightarrow$ The line is parallel to y－axis．
At any point on the line，x－coordinate is h ． $y=k \rightarrow$ The line is parallel to x－axis．
At any point on the line，y－coordinate is k ．

Linear graphs：are graphs in which the relationship between variables is given by a linear equation．
In the diagram，the line has gradient m and cuts the y－axis at $(0, c)$ ． c is the y－intercept． $\mathrm{P}(x, y)$ is any point on the line．
Then $m=\frac{y-c}{x} \quad \therefore=m x+c$
This is the general equation of a straight line which has a

gradient m and the y-intercept c.
Example 1 State the gradient and y-intercept of the line $x+2 y=2$ and draw the line.
Rearrange for $y . \quad 2 y=-x+2 \quad \therefore y=-\frac{1}{2} x+1$
Then gradient $=-\frac{1}{2}$ and y-intercept $=1$.
To draw a straight line, the coordinates of any two points on the line must be found. (In most cases, x-intercept and y-intercept are useful.)
Find the x-intercept. At the x-intercept, $y=0 . x+2 \times 0=2 \quad \therefore x=2$
The coordinates of the two points are $(0,1)$ and $(2,0)$.
Then join them.

Example 2 Find the equation of the line through $\mathrm{A}(1,7)$ and $\mathrm{B}(-2,-2)$.
The gradient $m=\frac{7-(-2)}{1-(-2)}=\frac{9}{3}=3$
The equation is $y=3 x+c$
Then find the y-intercept c by substituting

$$
x=1 \text { and } y=7 \text { into the equation. }
$$

$$
7=3 \times 1+c \quad c=7-3=4
$$

So the equation is $y=3 x+4$

(工) Curve Graphs

Quadratic graphs: are graphs in which the relationship between variables is given a quadratic equation. All quadratic graphs can be written in the form $y=a x^{2}+b x+c$. Its shape is that of a parabola.

Example 3 The table below shows some of the values of x and the corresponding values of y for the equation $y=-2 x^{2}-x+8$.

x	-3	-2	-1	$-1 / 2$	0	$1 / 2$	1	2	3

y	-7	2	7	8	8	7	5	-2	-13

(a) Draw the graph.
(b) By drawing a tangent, find the gradient of the curve at the point $(1,5)$.
(A tangent is the line which touches the curve at the point.)
(c) Estimate the area bounded by the curve, the x-axis, $x=-1$ and $x=1$.
(a) Plot these coordinates and draw
a smooth curve through them.
(b) Draw a tangent and find the coordinates of any point on the line. Now use the x-intercept $(2,0)$.
So the gradient $m=\frac{0-5}{2-1}=-5$
10
(c) Draw two trapeziums in which each height is 1 unit. Then find the total area of the trapeziums.

Area $=$ area of (1) + area of (2)

$$
=\frac{1}{2} \times(7+8) \times 1+\frac{1}{2} \times(5+8) \times 1=7.5+6.5=14 \text { unit }^{2}
$$

If each height of a trapezium is $1 / 2$ unit, a better estimate is obtained.
In general, completing the square
$y=a x^{2}+b x+c=a\left(x^{2}+\frac{b}{a} x\right)+c=a\left(x+\frac{b}{2 a}\right)^{2}-a\left(\frac{b}{2 a}\right)^{2}+c=a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}-4 a c}{4 a}$
This gives the coordinates of the turning point $\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)$.

In general, to draw a quadratic graph $\left(y=a x^{2}+b x+c\right)$, find the coordinates of:
(i) the y-intercept $=(0, c)$
(ii) the x-intercepts $=(x, 0)$ (if it exists and if the expression can be factorised) (the values of x are the roots of the equation $a x^{2}+b x+c=0$)
(iii) the turning point (the bottom of a parabola) $=\left(-\frac{b}{2 a},-\frac{b^{2}-4 a c}{4 a}\right)$

Example 4 Draw the graph of the equation $y=x^{2}+4 x-5$.
First find the y-intercept. $c=-5$
Find the x-intercept. At the x-intercept, $y=0$

$$
0=x^{2}+4 x-5 \quad(x+5)(x-1)=0 \quad \therefore x=-5,1
$$

Find the turning point by completing the square.

$$
y=(x+2)^{2}-4-5=(x+2)^{2}-9
$$

So the coordinates of the turning point are $(-2,-9)$
Plot these points and draw a smooth curve through them.

Other graphs

Example 5 The variables x and y are connected by the equation $y=20-\frac{12}{x}-x^{2}$.
The table below shows some corresponding values of x and y. The values of y are given correct to one decimal place where appropriate.

x	1	1.5	2	3	4	5	6	7
y	7	9.8	10	7	1	-7.4	-18	a

(a) Calculate the value of a.
(b) Draw the graph of $y=20-\frac{12}{x}-x^{2}$ for the range of $1 \leq x \leq 7$.
(c) By drawing a tangent, find the gradient of the curve at the point where $x=3$.
(d) Using your graph, solve the equation $20-\frac{12}{x}-x^{2}=x$
(a) Substitute 7 for x into the equation. $a=20-\frac{12}{7}-7^{2}=-30.7$ (to 1 dp)
(b) Plot the points and draw a smooth curve.

(c) Draw a tangent and then find the coordinates of the x-intercept. $x \approx 4.5$
\therefore the gradient $m=\frac{0-7}{4.5-3}=-\frac{14}{3}$
(d) The solution is obtained by solving the simultaneous equations $y=$ $20-\frac{12}{x}-x^{2}$ and $y=x$. Draw the line $y=x$. The point where two lines intersect is the solution. $\therefore x \approx 3.6$

(才) Distance-Time and Speed-Time Graphs

Distance-time graphs: are graphs which show the distance moved by an object with time.

$$
\begin{aligned}
& \text { The gradient gives the rate of change in distance i.e. the speed. } \\
& \text { speed }=\frac{\text { change in distance }}{\text { time }}
\end{aligned}
$$

Example 6 The graph below shows the distance of an object over a time 5 sec . Find the speed.

$$
\text { speed }=\frac{\text { change in distance }}{\text { time }}=\frac{80-0}{5}=16 \mathrm{~m} / \mathrm{s}
$$

Speed-time graphs: are graphs which show the speed of an object with time.

$$
\begin{aligned}
& \text { The gradient gives the rate of change in speed i.e. the acceleration. } \\
& \text { acceleration }=\frac{\text { change in speed }}{\text { time }}
\end{aligned}
$$

If acceleration is negative, it is called deceleration or retardation. This means the speed of an object decreases.
The area under the speed-time graph gives the distance travelled by an object.
Example 7 The diagram below is a speed-time graph of a journey.

Calculate: (a) the acceleration for the first 10 sec .
(b) the deceleration for the last 20 sec .
(c) the distance covered in the first 10 sec .
(d) the total distance covered in 40 sec .
(e) the average speed for the whole journey.
(f) the speed at 25 sec .
(a) acceleration $=\frac{\text { change in speed }}{\text { time }}=\frac{20-0}{10}=2 \mathrm{~m} / \mathrm{s}^{2}$
(b) The formula of deceleration is the same as that of acceleration.

$$
\text { deceleration }=\frac{\text { change in speed }}{\text { time }}=\frac{0-20}{20}=-1 \mathrm{~m} / \mathrm{s}^{2}
$$

(c) The distance covered in the first 10 sec is represented by the shaded area below.

distance $=$ shaded area $=\frac{1}{2} \times 10 \times 20=100 \mathrm{~m}$
(d) The total distance covered is represented by the shaded area below.

distance $=$ shaded area $=\frac{1}{2} \times(10+40) \times 20=500 \mathrm{~m}$
(e) average speed $=\frac{\text { total distance }}{\text { total time }}=\frac{500}{40}=12.5 \mathrm{~m} / \mathrm{s}$
(f) This question asks the speed as shown below.

From the formula of acceleration $\left(a=\frac{v-u}{t}\right), v=u+a t$ is obtained.
Now $a=-1 \mathrm{~m} / \mathrm{s}^{2}$ from (b).
\therefore speed $=20+(-1) \times 5=20-5=15 \mathrm{~m} / \mathrm{s}$

Exercise 7

1 Draw the following lines and write down: (i) the gradient, (ii) the y-intercept each.
(a) $y=x-2$
(b) $2 x-y=-4$
(c) $2 x+3 y=6$

2 Draw the following quadratic graph: (a) $y=2 x^{2}$ (b) $y=-x^{2}+3 x+10$
3 The variables x and y are connected by the equation $y=4-\frac{6}{x}+x$ and some corresponding values are given in the table below.

x	0.5	1	1.5	2	3	4	5
y	-7.5	-1	1.5	3	5	6.5	a

(a) Calculate the value of a.
(b) Draw the graph of $y=4-\frac{6}{x}+x$ for the range of $0.5 \leq x \leq 5$.
(c) By drawing a tangent, estimate the gradient of the curve at the point where $x=3$.
(d) Estimate the area between the curve, the x-axis, $x=2$ and $x=5$.
(e) Using your graph, solve the equation $-5=4-\frac{6}{x}+x$.
(f) Using your graph, solve the equation $10-\frac{6}{x}-3 x=0$.

4 The graph below shows how a car is decelerated uniformly from a speed of $30 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ in 20 sec and then uniformly brought to rest after a further 5 seconds.

Calculate: (a) the deceleration of the car for the first 20sec
(b) the total distance travelled in 25 sec
(c) the average speed
(d) the speed of the car at 22 sec

8 Inequations and Linear Programming

An inequation (inequality) is a mathematical statement that two algebraic expressions are not equal.

(ア) Basic Inequation

Inequation notation

The sign < means "less than".
The sign > means "greater than".
The sign \leq means "less than or equal to"
The sign \geq means "greater than or equal to".
e.g. $x>y$ means that x is greater than y.
$a \leq b$ means that a is less than or equal to b.

Rules for inequations

If $a>b$, then
(i) $a x>b x$ and $\frac{a}{x}>\frac{b}{x}$ if x is positive.
(ii) $a x<b x$ and $\frac{a}{x}<\frac{b}{x}$ if x is negative.

If an inequation is multiplied or divided by a negative number, the inequation sign must be reversed.
e.g. $6>-2$
then $6 \times 2>-2 \times 2$ i.e. $12>-4$ and $\frac{6}{2}>\frac{-2}{2}$ i.e. $3>-1$
but $6 \times(-2)<-2 \times(-2)$ i.e. $-12<4$ and $\frac{6}{-2}<\frac{-2}{-2}$ i.e. $-3<1$

(イ) Linear Inequations

A linear inequation is an inequation involving an expression of the first degree.
Linear inequations in one variable: can be solved in a similar way to that used in solving linear equations.
Example 1 Solve: (a) $3 x-4>5$ (b) $2(1-x) \geq 3(x+4)$
(a) Move -4 to the right side. $3 x>5+4=9 \therefore x>3$

This is illustrated on a number line. An open circle (\circ) means that the value at 3
is not included.

(b) First expand. $2-2 x \geq 3 x+12$

Then collect like terms and simplify. $-2 x-3 x \geq 12-2-5 x \geq 10$
Divide both sides by -5 . (The sign must be reversed.) $x \leq-2$
This is illustrated on a number line. A shaded circle (\bullet) means that the value at -
2 is included.

Double inequation: represents two inequations.
e.g. $1<x \leq 3 x$ is greater than 1 and also less than or equal to 3 .

Example 2 Solve $1 \leq 2 x+3<7$ and illustrate on a number line.
Take each inequation separately.

$$
\begin{array}{lc}
1 \leq 2 x+3 & 2 x+3<7 \\
1-3 \leq 2 x & 2 x<7-3 \\
-2 \leq 2 x & 2 x<4 \\
-1 \leq x & x<2
\end{array}
$$

These solutions can be expressed by the double inequation $-1 \leq x<2$.

Linear inequations in two variables: can be shown by the half planes on the coordinate plane.
Example 3 Show the solution of $y \geq x+1$.
First draw the boundary line $y=x+1$. Find the two points on the line.

The y-intercept is $1 .(\because 1$ is constant $)$
At the x-intercept, $y=0 \quad 0=x+1 \quad \therefore x=-1$
Join these points, $(0,1)$ and $(-1,0)$
To determine the half plane, take the origin $(0,0)$ as a test point. Substitute the coordinates of the origin into the inequation.
$0 \geq 0+1=1$ which is not true.
i.e. the inequation does not include the origin.

So the solution is above the line.
If the line does not pass through the origin, it should be used as the test point to determine the half plane.
If the inequation was $y>x+1$, points on the boundary line are not included. To show this, a broken (dotted) line is used.

For any function,

(i) if $y \geq f(x)$, the solution is above the line.

(ii) if $y \leq f(x)$, the solution is below the line.

$$
y \leq f(x)
$$

Note

$$
y \geq f(x)
$$

Example 4 Illustrate the solution set of inequations $x \geq-2$ shading the unwanted regions.

First draw the boundary lines one by one, then shade the unwanted regions.

Draw $x=-2$ and shade to the left $(x<-2)$.
Next draw $y=-1$ and shade below the line $(y<-1)$.
Then draw $x+2 y=6 \Rightarrow y=-\frac{1}{2} x+3$ and shade above the line $\left(y>-\frac{1}{2} x+3\right)$.

$$
\left(\because x+2 y \leq 6 \Rightarrow y \leq-\frac{1}{2} x+3\right)
$$

The solution set is shown by the unshaded region.

(ウ) Linear Programming

Linear programming is a method used to maximise or minimise a linear function subject expressed by linear inequations. Solutions are usually found by drawing graphs of inequations and looking for optimum values which satisfy the required conditions. Problems frequently relate to getting maximum profits for output and cost.

Example 5 A business man decides to buy two types of chickens, broilers and layers. Broilers cost K20 000 per each and layers cost K30 000 per each. He has K600 000. He decides that the total number of chickens should not be less than 20 and there should be at least 10 layers. He buys x broilers and y layers.
(a) Write down three inequalities which correspond to the above conditions.
(b) Illustrate these inequalities on a graph by shading the unwanted regions.
(c) He makes a profit of K5 000 on each broiler and K5 000 on each layer. Assuming he sells all his chickens, find how many chickens of each type he should buy to maximise his profit and calculate his profit.
(a) Cost must be less than K600 000. $\Rightarrow 20000 x+30000 y \leq 600000$

Total number of chickens is not less than 20. $\Rightarrow x+y \geq 20$
There are at least 10 layers. $\Rightarrow y \geq 10$
(b) Rearrange the first inequation.

$$
20000 x+30000 y \leq 600000 \quad 2 x+3 y \leq 60 \quad \therefore y \leq-\frac{2}{3} x+20
$$

Draw $y=-\frac{2}{3} x+20$ and shade above the line $\left(y>-\frac{2}{3} x+20\right)$.
Next rearrange the second inequation. $x+y \geq 20 \therefore y \geq-x+20$
Draw $y=-x+20$ and shade below the line $(y<-x+20)$.
Then draw the line $y=10$ and shade below the line $(y<10)$.

(c) Total profit is $5000 x+5000 y$.

Let k represent the total profit. $5000 x+5000 y=k \quad \therefore y=-x+\frac{k}{5000}$
This is the straight line in which the gradient is -1 and y-intercept is $\frac{k}{5000}$.
When the y-intercept is maximum, his profit is maximum.
The line $y=-x+\frac{k}{5000}$ can be drawn as shown below. When this line passes through the point $(15,10)$, the y-intercept becomes maximum.
Therefore $x=15$ and $y=10$.
(15 broilers and 10 layers)
Profit $=5000 \times 15+5000 \times 10$

$$
=\mathrm{K} 125000
$$

Exercise 8

1 Solve the inequations and show on a number line. (a) $2 x>x-1$ (b) $1-x \geq x-5$
$\begin{array}{ll}\text { (c) } \frac{x}{4}+1<6-x & \text { (d) }-1<x+2 \leq 4\end{array}$
2 Find the integer x such that $x+2<7<2 x+1$
3 Given that $-2 \leq x \leq 3$ and $-6 \leq y \leq 4$, find: (a) the smallest possible value of $x+y$
(b) the largest possible value of $x-y$ (c) the value of y if $y^{2}=25$

4 Shade the solutions of the inequations. (a) $y>-x+3$ (b) $3 x-2 y \leq 6$
5 Illustrate the solution sets of the inequations by shading the unwanted regions.
(a) $x \geq 0, y \geq 0, x+y<4$
(b) $x>-2, y<4,2 x+3 y \leq 12$
(c) $y \leq x+2, y \leq-2 x+6,3 y \geq-2 x+6$

6 A new tablet is being tested with two chemicals, acid A and acid B. Each milligram of acid A uses a volume of $1 \mathrm{~mm}^{3}$ and each milligram of acid B uses a volume of $2 \mathrm{~mm}^{3}$. It is given that each tablet contains $x \mathrm{mg}$ of acid A and $y \mathrm{mg}$ of acid B.
(a) Express each of the following conditions as an inequality involving x and y.
(i) The total mass of the chemicals must be at least 60 mg .
(ii) The mass of acid B must be at least more than that of acid A.
(iii) The mass of acid B must not be more than twice that of acid A .
(iv) The volume of a tablet must not be more than $150 \mathrm{~mm}^{3}$.
(b) Show these four inequalities on a graph by shading the regions which are not required.
(c) Using your graph, find the mass of acid A and the mass of acid B in a tablet containing the greatest possible amount of acid B.
(d) Find the smallest possible volume of a tablet.

9 Proportion and Variation

($\boldsymbol{ア}$) Proportion

A proportion is a relationship of the equality of ratios between two pairs of quantities. The symbol \propto means "is proportional to" or "varies as".

Direct proportion: is the relationship between quantities, such that both quantities increase or decrease in the same ratio.
e.g. If a $\operatorname{speed}(v)$ of a car is constant, the distance (x) travelled by the car is directly proportional to the $\operatorname{time}(t)$ taken as $x=v t$, i.e. $x \propto t$ (v is constant).

Inverse proportion: is the relationship between quantities, such that when one quantity increases the other decreases in the same ratio.
e.g. If a travel distance (x) is fixed, the time (t) taken is inversely proportional to the $\operatorname{speed}(v)$ of a car as $v=\frac{x}{t}$, i.e. $v \propto \frac{1}{t}(x$ is constant $)$.
Example 1 A holiday is planned for a group of 20 children and food is bought to last for 15 days. If the number of children were to increase to 25 , how long would the same amount of food last?

20 children $\rightarrow 15$ days The number of children is inversely proportional
25 children $\rightarrow x$ days to the number of days to last food.

$$
20 \times 15=25 \times x \quad \therefore x=\frac{20 \times 15}{25}=12 \text { days }
$$

(イ) Variation

Variation requires you to find a constant in a formula that relates two or more variables in a ratio.
Direct variation: If y is directly proportional to $x(y$ varies directly as x), this is written as $y \propto x$. Then this relationship can also be written as $y=k x$ where k is a constant (the constant of proportionality).
$\begin{aligned} & y<x \\ & \text { The graph for direct variation is a straight line. }\end{aligned} . \quad y=k x$

Example $2 y$ varies directly as x and $y=6$ when $x=2$. Find the value of y when $x=5$
This relationship can be written as $y=k x$
Then $6=k \times 2 k=3 \therefore y=3 x$ So $y=3 \times 5=15$
Inverse variation: If y is inversely proportional to $x(y$ varies inversely as x), this is written as $y \propto \frac{1}{x}$. Then this relationship can also be written as $y=\frac{k}{x}$.

$$
y \propto \frac{1}{x} \Rightarrow y=\frac{k}{x} \text { or } x y=
$$

The graph for inverse variation is a curve (hyperbola).

Example $3 y$ varies inversely as x and $y=4$ when $x=6$. Find y

This relationship can be written as $y=\frac{k}{x}$.
Then $k=x y=6 \times 4=24 \quad \therefore y=\frac{24}{x} \quad$ So $y=\frac{24}{3}=8$
Joint variation: is a variation in which one variable depends on two or more other variables.
e.g. The volume V of a cylinder is given by $V=\pi r^{2} h$. V varies directly as the square of the radius (r) and directly as the height (h).

Example $4 y$ varies directly as z and inversely as x^{2}, and when $y=6, z=3 x=2$. Find the values of y when $z=6$ and $x=4$.

This relationship can be written as $y=\frac{k z}{x^{2}}$.

Then $k=\frac{y x^{2}}{z}=\frac{6 \times 2^{2}}{3}=8 \quad \therefore y=\frac{8 z}{x^{2}}$ So $y=\frac{8 \times 6}{4^{2}}=3$

Exercise 9

1 It takes 6 people 12 hours to paint a house. If the work has to be completed in 8 hours how many people will be needed?
$2 y$ varies directly as the square of x and $y=8$ when $x=2$. Find y when $x=5$.
$3 y$ varies inversely as $(x-2)$ and $y=2$ when $x=5$. Find y when $x=8$
$4 y$ varies directly as the square of x and inversely as $z . y=5$ when $x=1$ and $z=3$. Find: (a) the equation (b) y when $x=2$ and $z=5$ (c) x when $y=6$ and $z=10$

10 Angles, Polygons and Bearings

(ア) Angles

Types of angles

Acute angle
Right angle

$$
\theta=90^{\circ}
$$

90°

Obtuse angle

$$
90^{\circ}<\theta<180^{\circ}
$$

$$
\theta=180^{\circ} \quad 180^{\circ}<\theta<360^{\circ} \quad \theta=360^{\circ}
$$

Related angles

Adjacent angles: are angles which have a common vertex and a common line.

Complementary angles: are two angles Supplementary angles: are two angles which add up to 90°. which add up to 180°.

Vertically opposite angles: are the angles on opposite sides of the point where two straight lines cross. These pairs of angles are equal.

Angles associated with parallel lines:

Corresponding angles: are angles which lie on the same sides of the transversal and on the same relative sides of the parallel lines. Corresponding angles are
 equal.

Alternate angles: are angles which lie on the opposite sides of the transversal and on opposite relative sides of the parallel lines. Alternate angles are equal.

Example 1 Find: (a) $\angle \mathrm{BEG}$
(b) $\triangle \mathrm{BFG}$

(a) $\angle \mathrm{BEG}=\angle \mathrm{ABE}(\because$ Alternate angles $)$

$$
=45^{\circ}
$$

(b) $\angle \mathrm{BFG}=180^{\circ}-\angle \mathrm{BFD}(\because$ Supplementary angles $)$

$$
=180^{\circ}-\angle \mathrm{CBF}(\because \text { Alternate angles })
$$

$$
=180^{\circ}-60^{\circ}=120^{\circ}
$$

(イ) Polygons

A polygon is a plane shape enclosed by three or more straight lines.
A regular polygon is a polygon with all sides equal and all angles equal.

Types of polygons

Number of sides	Name of polygon	Shape
3	Triangle	\square
4	Quadrilateral	\square
5	Pentagon	\square
6	Hexagon	\square

Number of sides	Name of polygon	Shape
7	Heptagon	
8	Octagon	
9	Nonagon	
10	Decagon	

Angles of a polygon

-An interior angle is the angle inside a polygon between two adjacent sides.
-An exterior angle is the angle between a side of a polygon and an adjacent side extended
 outwards.

Sum of the interior angles
e.g. Sum of the interior angles of a triangle

Draw a parallel line through A to side BC.
$\angle b=\triangle \mathrm{DAB}(\because$ Alternate angles $)$ Similarly $\angle \mathrm{c}=\angle \mathrm{EAC}$
$\therefore \mathrm{a}+\mathrm{b}+\mathrm{c}=180^{\circ}(\because$ Straight angle $)$
e.g. Sum of the interior angles of a quadrilateral and a pentagon

In a quadrilateral, if one diagonal is drawn,
there are two triangles in it.
\therefore The sum of the interior angles of a quadrilateral

$=2 \times 180^{\circ}=360^{\circ}$

\therefore The sum of the interior angles of a pentagon
$=3 \times 180^{\circ}=540^{\circ}$

Name of polygon	Number of sides	Number of triangles	Sum of interior angles
Triangle	3	1	$1 \times 180^{\circ}=180^{\circ}$
Quadrilateral	4	2	$2 \times 180^{\circ}=360^{\circ}$
Pentagon	5	3	$3 \times 180^{\circ}=540^{\circ}$
\vdots	\vdots	\vdots	\vdots
n-sided polygon	n	$n-2$	$(n-2) \times 180^{\circ}$

Sum of the interior angles of an n-sided polygon $=(n-2) \times 180^{\circ}$ Sum of the exterior angles

An n-sided polygon has n exterior angles.
The sum of exterior angle and the interior angle next to it is 180° because of a straight angle.

\therefore Sum of exterior angles + sum of interior angles $=n \times 180^{\circ}$
Here sum of interior angles $=(n-2) \times 180^{\circ}$
\therefore Sum of exterior angles $=n \times 180^{\circ}-(n-2) \times 180^{\circ}=360^{\circ}$

Sum of the exterior angles of any polygon $=360^{\circ}$

Example 2 Find the size of each exterior and interior angles of a regular hexagon
A hexagon has 6 exterior and 6 interior angles.
Each exterior angle $=\frac{360^{\circ}}{6}=60^{\circ}$
Each interior angle $=180^{\circ}-60^{\circ}=120^{\circ}$

$$
\text { or } \frac{(6-2) \times 180^{\circ}}{6}=120^{\circ}
$$

Example 3 ABCD is a kite in which $\triangle \mathrm{DBC}=65^{\circ}$ and $\triangle \mathrm{DAC}=30^{\circ}$. Find (a) $\triangle \mathrm{DAB}$ (b) $\angle \mathrm{ADB}$ (c) $\angle \mathrm{ADC}$ (d) $\triangle \mathrm{DCB}$
(a) $\triangle \mathrm{ABD}$ is an isosceles triangle.
$\therefore \mathrm{DAB}=2 \times \triangle \mathrm{DAC}=2 \times 30^{\circ}=60^{\circ}$
(b) $\angle \mathrm{ADB}=\angle \mathrm{ABD}=\frac{180^{\circ}-\angle \mathrm{DAB}}{2}=\frac{180^{\circ}-60^{\circ}}{2}=60^{\circ}$

(c) $\triangle \mathrm{CBD}$ is an isosceles triangle. $\therefore \mathrm{CDB}=\angle \mathrm{CBD}=65^{\circ}$
$\therefore \triangle \mathrm{ADC}=\angle \mathrm{ADB}+\angle \mathrm{BDC}=60^{\circ}+65^{\circ}=125^{\circ}$
(d) $\triangle \mathrm{DCB}=180^{\circ}-2 \times \angle \mathrm{BDC}=180^{\circ}-2 \times 65^{\circ}=50^{\circ}$

Example 4 ABCDE is a regular pentagon. Find the size of $\angle \mathrm{ACD}$.
Each interior angle $=\frac{(5-2) \times 180^{\circ}}{5}=108^{\circ}$

$\left(\right.$ or each exterior angle $=\frac{360^{\circ}}{5}=72^{\circ}$ interior angle $=180^{\circ}-72^{\circ}$)

$$
\begin{aligned}
& \triangle \mathrm{ABC} \quad \text { is } \quad \text { an } \quad \text { isosceles } \quad \text { triangle. } \\
& \frac{180^{\circ}-\angle \mathrm{ABC}}{2}=\frac{180^{\circ}-108^{\circ}}{2}=36^{\circ} \\
& \therefore \square \mathrm{ACD}=108^{\circ}-36^{\circ}=72^{\circ}
\end{aligned}
$$

(ウ) Pythagoras Theorem

In any right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

$$
c^{2} \xlongequal[a^{2}+b^{2}]{ }
$$

This can be rearranged to: $c=\sqrt{a^{2}+b^{2}}$

Example 5 Find the length of the side marked x.

A set of three positive integers $(a, b$ and $c)$ which satisfy Pythagoras theorem $\left(c^{2}=a^{2}+\right.$ b^{2}) is called a Pythagoras triple.
There is an infinite number of Pythagoras triples. The most well known are

$$
3,4,5 ; 5,12,13 ; 7,24,25 ; 8,15,17
$$

Example 6 An equilateral triangle has sides of length 6 cm . Find the height of the triangle.

In an equilateral triangle, the lengths of all sides are equal
In the diagram on the right, the height is AD .
BD is 3 cm because of half of BC .
Use the formula. $6^{2}=3^{2}+h^{2} h^{2}=6^{2}-3^{2}=36-9=27$

$$
\therefore h=\sqrt{27} \approx 5.20 \mathrm{~cm}
$$

Example 7 If A is the point $(3,1)$ and B is the point $(5,5)$
(a) Plot the points A and B on a coordinate plane.
(b) Calculate the distance AB .
(a) The diagram is on the right.
(b) Let C represent a point $(5,1)$.
$\mathrm{AC}=5-3=2, \mathrm{BC}=5-1=4$
Use the formula.

$$
\mathrm{AB}=\sqrt{4^{2}+2^{2}}=\sqrt{20} \approx 4.47
$$

In general, the distance between points $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ can be calculated as follows:

$$
\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Example 8 ABCDEFGH is a cuboid in which $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\mathrm{CG}=2 \mathrm{~cm}$. Find the length of AG.

First find the length of AC.

$$
\mathrm{AC}^{2}=3^{2}+4^{2}=25 \quad \therefore \mathrm{AC}=\sqrt{25}=5 \mathrm{~cm}
$$

Then find the length of AG

$$
\mathrm{AG}^{2}=5^{2}+2^{2}=29 \quad \therefore \mathrm{AG}=\sqrt{29} \approx 5.39 \mathrm{~cm}
$$

(エ) Bearings

A bearing is a direction measured in degrees,

clockwise from North.

Bearings are written with $\mathbf{3}$ digits. (e.g. $030^{\circ}, 120^{\circ}$)
e.g.

The bearing of B from $\mathrm{A}=065^{\circ}$

The bearing of A from $\mathrm{B}=180^{\circ}+65^{\circ}$
65°
simsiky@gmail.com

Example 9 Given that OAB is an equilateral triangle,
find: (i) the bearing of A from O
(ii) the bearing of O from A
(iii) the bearing of B from O
(iv) the bearing of A from B
(i)
(ii)
(iii)

$$
\begin{array}{r}
\text { Each interior angle of an equilateral triangle is } 60^{\circ} \\
=170^{\circ}
\end{array}
$$

(iv)

Exercise 10

$1 \angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COD}=x$ and $\angle \mathrm{AOE}=114^{\circ}$
Find x.

2 Find (a) $\angle \mathrm{ABD}$ (b) $\angle \mathrm{EBC}$ (c) $\angle \mathrm{BEF}$
3 Find the sum of the interior angles of decagon.
4 Each interior angle of a regular polygon is 135°. Find the number of sides of this polygon
5 ABCD is a quadrilateral in which AB is parallel to DE, AD is parallel to $\mathrm{BC}, \mathrm{AD}=$ $\mathrm{DC}, \angle \mathrm{ABE}=60^{\circ}$ and $\triangle \mathrm{AFF}=35^{\circ}$. AFC is a straight line.
Calculate (a) $\angle \mathrm{BED}$ (b) $\triangle \mathrm{BAC}$ (c) $\angle \mathrm{CFD}$

6 ABCDEF is a regular hexagon. Find the size of $\angle \mathrm{BAE}$

7 Find the values of x and y.

8 ABCD is a quadrilateral. Find the length of the side AB .

9 The length of the diagonal of a square is 4 cm . Find the length of the sides of the square.
10 Find the distance between the points $A(4,6)$ and $B(10,14)$

11 ABC is a right-angled triangle in which $\triangle \mathrm{NAC}=110^{\circ}$ and $\angle \mathrm{ABC}=50^{\circ}$. Find the bearing of:
(a) A from C
(b) B from A
(c) A from B
(d) C from B

11 Angle Properties in a Circle

(ア) Parts of a Circle

A circumference is the distance around the edge of a circle.

An arc is a part of the circumference.
A radius is a straight line from the centre of a circle to a point on the circumference.
A diameter is a straight line through the centre of a circle, joining two opposite points on the circumference. The diameter is twice the radius.
A chord is a straight line joining any two points on the circumference.
A sector is a part of a circle formed by two radii and an arc.
A segment is a part of a circle formed an arc and a chord.

(イ) Angles in a Circle

Angles in a circle have some important properties.
Angles at the centre and on the circumference
The angle at the centre of a circle is twice the angle on the circumference of the circle (subtended by the same arc).

$$
\hat{\mathrm{A}} \hat{\mathrm{OB}}=2 \times \hat{\mathrm{APB}}
$$

Angles in the same segment

Angles in the same segment, subtended by the same arc, are equal.

$$
\hat{A} \hat{P} B=\hat{A} \hat{Q} B=\hat{A} B
$$

Angles in a semicircle

Any angle in a semicircle, subtended by a diameter, is a right angle.
$\mathrm{A} \hat{\mathrm{PB}}=\mathrm{A} \hat{\mathrm{Q}} \mathrm{B}=90^{\circ}$

Example 1 In the diagram, AOC is the diameter.
Find x, y and z.

$$
x=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} \times 100^{\circ}=50^{\circ}
$$

$$
y=\frac{180^{\circ}-100^{\circ}}{2}=\frac{80^{\circ}}{2}=40^{\circ}
$$

($\because \triangle \mathrm{OAB}$ is an isosceles triangle)
or $y=180^{\circ}-50^{\circ}-90^{\circ}=40^{\circ}$
($\angle \mathrm{ABC}=90^{\circ} \because$ in a semicircle)
$z=y=40^{\circ}(\because$ same $\operatorname{arc} \mathrm{BC})$

(ウ) Cyclic Quadrilaterals

A cyclic quadrilateral is a quadrilateral which has all its vertices on the circumference of a circle.
Angles within a cyclic quadrilateral have some important properties.

Opposite angles of a cyclic quadrilateral

$$
a+c=180^{\circ} \text { and } b+d=180^{\circ}
$$

Exterior and opposite interior angles of a cyclic quadritateral

The exterior angle of a cyclic quadrilateral is equal to the opposite interior angle.

$$
a=x
$$

Example $2 \angle \mathrm{BAD}=75^{\circ}$ and $\angle \mathrm{BEC}=25^{\circ}$.
Calculate: (a) $\angle \mathrm{BCD}$
(b) $\angle \mathrm{ADC}$
(c) $\angle \mathrm{CBE}$

(a) $\angle \mathrm{BCD}=180^{\circ}-\triangle \mathrm{BAD}(\because$ opposite angles $)$

$$
=180^{\circ}-75^{\circ}=105^{\circ}
$$

(b) $\angle \mathrm{ADC}=180^{\circ}-\angle \mathrm{BAD}-\angle \mathrm{AEC}(\because \triangle \mathrm{ADE})$

$$
=180^{\circ}-75^{\circ}-25^{\circ}=80^{\circ}
$$

(c) $\angle \mathrm{CBE}=\angle \mathrm{ADC}(\because$ exterior and opposite interior angles $)$

$$
=80^{\circ}
$$

(エ) Tangents

A tangent to a circle is a straight line which touches the circle at a point.

Radius at the point of contact

A tangent to a circle is always perpendicular to the radius at the point of contact.

$$
\mathrm{O} \hat{\mathrm{~T}} \mathrm{~A}=90^{\circ}
$$

Two tangents from an outside point

Two tangents to a circle from an outside point are equal in length and the line joining the centre of the circle and the point bisects the angle between the two tangents.

$$
\mathrm{AP}=\mathrm{BP} \text { and } \mathrm{A} \hat{\mathbf{P} O}=\mathbf{B} \hat{\mathbf{P} O}
$$

Alternate segment

The angle formed between a tangent and a chord from the point of contact is equal to any angle subtended by the chord in the alternate segment.

$$
\hat{\mathrm{A}} \hat{\mathrm{~T}}=\mathrm{B} \hat{\mathrm{C}} \mathrm{~T}
$$

Example 3 In the diagram, ABE and ACF are the tangents to the circle at B and C respectively. BD is a diameter and $\angle \mathrm{BAC}=38^{\circ}$. Calculate:
(a) $\angle \mathrm{CBA}$
(b) $\triangle \mathrm{DBA}$
(c) $\angle \mathrm{BDC}$

(a) $\angle \mathrm{CBA}=\frac{180^{\circ}-38^{\circ}}{2}=71^{\circ}(\because$ isosceles triangle $)$
(b) $\triangle \mathrm{DBA}=90^{\circ}(\because$ angle between tangent and radius $)$
(c) $\angle \mathrm{BDC}=\angle \mathrm{CBA}=71^{\circ}(\because$ angle in an alternate segment $)$

Exercise 11

12 Find the size of each angle marked by letters. O is the centre of the circle.
(a)

13 In the diagram below, TB and TD are tangents to the circle through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . DC produced meets TB at E . Given that $\angle \mathrm{BCE}=65^{\circ}, \triangle \mathrm{DTE}=50^{\circ}$ and $\angle \mathrm{CDT}=$ 41°, calculate:
(a) $\angle \mathrm{BDC}$
(b) $\angle \mathrm{CEB}$
(c) $\triangle \mathrm{BAD}$
(d) $\triangle \mathrm{DBC}$

14 In the diagram below, O is the centre of the circle with diameter $\mathrm{BE} . \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are points on the circle. RES is a tangent to the circle. Given that $\angle \mathrm{CBP}=$ $68^{\circ}, \angle \mathrm{CAE}=54^{\circ}, \mathrm{CD}=\mathrm{DE}$ and PBAQ is a straight line, calculate:
(a) $\triangle \mathrm{REC}$
(b) $\triangle \mathrm{BEC}$
(c) \triangle SEA
(d) $\angle \mathrm{CED}$

15 Symmetry

A shape has symmetry when parts of that shape fit exactly onto other parts of the same shape under certain rules of movement.
A plane shape can have two types of symmetry, line symmetry and rotational symmetry.

(ア)Line Symmetry

Line symmetry is the symmetry in which a shape can be fold along a line so that one half of the shape fits exactly onto the other half.
e.g. symmetrical shapes (lines of symmetry shown in broken lines)

isosceles triangle

equilateral triangle

ectangle
square

(イ) Rotational Symmetry

Rotational symmetry is the symmetry in which a shape can be turned about a fixed point and fit exactly onto itself.
Order of rotational symmetry: is the number of times that a shape can be turned to fit exactly onto itself within 360°. Every shape has an order of rotational symmetry of at least 1. $\frac{360^{\circ}}{\text { order of rotational symmetry }}$ represents the angle of rotation.
e.g. (The letter A is used only to show the positions of the shape as it turns.)

An equilateral triangle has a rotational symetry of order 3.

16 Copy the figure below and show its lines of symmetry.

17 State the number of lines of symmetry and the order of rotational symmetry for each of the following letters: A D E F H M S T X Y
18 State the number of lines of symmetry and the order of rotational symmetry of: (a) a regular hexagon, (b) a regular octagon, (c) a parallelogram, (d) a kite, (e) a rhombus, (f) an isosceles triangle, (g) a circle.
19 For each of the following figures, state (a) the number of lines of symmetry and (b) the order of rotational symmetry.

20 Similarity

Geometrical figures are similar if they are the same in shape but different in size, such as those produced by enlargement.
(They are said to be congruent if they are the same in shape and size.)

(ア) Similar Triangles

Two given triangles are similar if one of the following conditions can be shown.
(a) the corresponding angles are equal.
(b) the corresponding sides are in the same ratio.
(c) two pairs of corresponding sides are in the same ratio and the angles between these sides are equal.

(b)

(c)

The ratio of corresponding sides is called the scale factor (k) of the enlargement.
Example 1 In $\triangle \mathrm{ABC}, \mathrm{PQ}$ is parallel to BC ,
$\mathrm{AP}=2 \mathrm{~PB}$ and $\mathrm{BC}=6 \mathrm{~cm}$.
(a) Show that $\triangle A P Q$ is similar to $\triangle A B C$.
(b) Find the length of PQ ,
(a) $\angle \mathrm{A}$ is common.

$\angle \mathrm{ABC}=\angle \mathrm{APQ}$ and $\angle \mathrm{ACB}=\angle \mathrm{AQP}(\because$ corresponding angles $)$
The corresponding angles are equal. Therefore $\triangle A P Q$ is similar to $\triangle A B C$.
(b) $\frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{AQ}}{\mathrm{AC}}=\frac{\mathrm{PQ}}{\mathrm{BC}}$

Now $\frac{\mathrm{AP}}{\mathrm{PB}}=\frac{2}{1}$ so $\frac{\mathrm{AP}}{\mathrm{AB}}=\frac{2}{3}=\frac{\mathrm{PQ}}{\mathrm{BC}}$
$\therefore \mathrm{PQ}=\frac{2}{3} \mathrm{BC}=\frac{2}{3} \times 6=4 \mathrm{~cm}$

(イ) Areas of Similar Figures

$\frac{\mathrm{DE}}{\mathrm{AB}}=\frac{\mathrm{EF}}{\mathrm{BC}}=\frac{3}{2}$ and $\angle \mathrm{ABC}=\triangle \mathrm{DEF}$.
Therefore $\triangle A B C$ is similar to $\triangle D E F$.
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 6 \times 4=12 \mathrm{~cm}^{2}$
Area of $\triangle \mathrm{DEF}=\frac{1}{2} \times 9 \times 6=27 \mathrm{~cm}^{2}$
$\frac{\text { Area of } \triangle \mathrm{DEF}}{\text { Area of } \triangle \mathrm{ABC}}=\frac{27}{12}=\frac{9}{4}=\left(\frac{3}{2}\right)^{2}$

If the scale factor of two similar figures is k, the ratio of their areas is k^{2}.
(If the ratio of the sides of two similar figures is $a: b$, the ratio of their areas is $a^{2}: b^{2}$.)
Example 2 The given triangles are similar. If the area of the smaller triangle is $8 \mathrm{~cm}^{2}$, find the area of the larger triangle.

Ratio of sides $=2: 3$

So ratio of areas $=2^{2}: 3^{2}=4: 9$
Let x represent the area of the larger triangle.

$$
4: 9=8: x \quad 4 x=9 \times 8 \quad \therefore x=\frac{9 \times 8}{4}=18 \mathrm{~cm}^{2}
$$

Example 3 In $\triangle \mathrm{ABC}$, PQ is parallel to BC . If the area of the trapezium PBCQ is $\frac{16}{25}$ of $\triangle \mathrm{ABC}$, find the ratio of AP : PB .
$\triangle A P Q$ is similar to $\triangle A B C$.

Area of $\triangle \mathrm{APQ}=\left(1-\frac{16}{25}\right)$ of $\Delta \mathrm{ABC}=\frac{9}{25}$ of $\Delta \mathrm{ABC}$
$\frac{\text { Area of } \triangle \mathrm{APQ}}{\text { Area of } \triangle \mathrm{ABC}}=\frac{9}{25}$ so $\frac{\mathrm{AP}}{\mathrm{AB}}=\sqrt{\frac{9}{25}}=\frac{3}{5} \quad \therefore \frac{\mathrm{AP}}{\mathrm{PB}}=\frac{3}{2}$

$\therefore \mathrm{AP}: \mathrm{PB}=3: 2$

Example 4 In $\triangle A B C, D$ is a point on $B C$ such that $\angle \mathrm{BAD}=\angle \mathrm{ACB}$. Given that $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$ and the area of $\triangle A B D$ is $12 \mathrm{~cm}^{2}$. calculate:
(a) the length of BD
(b) the area of $\triangle \mathrm{ABC}$

(a) $\angle B$ is common and $\angle \mathrm{BAD}=\angle \mathrm{ACB}$. Therefore $\triangle \mathrm{DBA}$ is similar to $\triangle \mathrm{ABC}$.

$$
\frac{\mathrm{DB}}{\mathrm{AB}}=\frac{\mathrm{BA}}{\mathrm{BC}} \quad \frac{\mathrm{DB}}{6}=\frac{6}{9} \quad \therefore \mathrm{DB}=\frac{2}{3} \times 6=4 \mathrm{~cm}
$$

(b)

$$
\mathrm{BC}=\frac{3}{2} \mathrm{BA}
$$

\therefore Area of $\triangle \mathrm{ABC}=\left(\frac{3}{2}\right)^{2} \times$ area of $\triangle \mathrm{ABD}=\frac{9}{4} \times 12=27 \mathrm{~cm}^{2}$

Exercise 13

21 Calculate the value of x. A

1 In $\triangle \mathrm{ABC}, \mathrm{AB}=6 \mathrm{~cm}$ and the area of $\triangle \mathrm{ADE}$ is $\frac{4}{9}$ of $\triangle \mathrm{ABC}$. Calculate the length of

2 In $\triangle \mathrm{PQR}, \mathrm{S}$ is a point on QR such that $\angle \mathrm{QSP}=\angle \mathrm{QPR}$. Given that $\mathrm{PS}=4 \mathrm{~cm}, \mathrm{QS}=$ $5 \mathrm{~cm}, \mathrm{PR}=6 \mathrm{~cm}$ and the area of $\triangle \mathrm{PQR}$ is $18 \mathrm{~cm}^{2}$, calculate: (a) the length of PQ (b) the area of $\triangle P Q S$

22 Mensuration

Mensuration means the measurement and calculation of perimeters, areas and volumes. Some basic formulas are given as following. Those should be memorised.

(\mathcal{P}) Perimeters and Areas of Plane Figures

$P=$perimeter, $A=$ area Rectangle

Example 1 The diagram on the right shows a flower bed consisting of a rectangle and a semicircle.
Taking $\pi=3.14$, find: (a) the perimeter
(b) the area
(a) Perimeter $=$ sum of three sides of the rectangle

+ half circumference

$$
\begin{aligned}
& =8+6+8+\frac{1}{2} \times \pi d=22+\frac{1}{2} \times 3.14 \times 6 \\
& =22+9.42=31.42 \mathrm{~m}
\end{aligned}
$$

(b) Area $=$ area of rectangle + area of semicircle

$$
=8 \times 6+\frac{1}{2} \times \pi r^{2}=48+\frac{1}{2} \times 3.14 \times 3^{2}
$$

$$
=48+14.13=62.13 \mathrm{~m}^{2}
$$

Example 2 Take $\pi=\frac{22}{7}$. In the diagram on the right, find: (a) the shaded area
(b) the perimeter of this area

(a) Shaded area $=$ area of sector $\mathrm{OBC}-$ area of sector OAD area of sector $\mathrm{OBC}=\frac{120^{\circ}}{360^{\circ}} \times \pi \times 14^{2}$ area of sector $\mathrm{OBC}=\frac{120^{\circ}}{360^{\circ}} \times \pi \times 7^{2}$

$$
\begin{aligned}
\text { Shaded area } & =\frac{120^{\circ}}{360^{\circ}} \times \pi \times\left(14^{2}-7^{2}\right) \\
& =\frac{1}{3} \times \frac{22}{7} \times(14+7)(14-7) \Leftarrow a^{2}-b^{2}=(a+b)(a-b) \\
& =154 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) Perimeter $=$ sum of lengths of $\mathrm{AB}, \operatorname{arc} \mathrm{BC}, \mathrm{CD}$ and $\operatorname{arc} \mathrm{DA}$

$$
\begin{aligned}
& =7+\frac{120^{\circ}}{360^{\circ}} \times 2 \times \pi \times 14+7+\frac{120^{\circ}}{360^{\circ}} \times 2 \times \pi \times 7 \\
& =14+\frac{1}{3} \times 2 \times \frac{22}{7} \times(14+7)=14+44=58 \mathrm{~cm}
\end{aligned}
$$

(イ) Surface Areas and Volumes of Three-Dimensional Figures

$$
\begin{aligned}
& A=2 l b+2 h b+2 h l \\
& V=l b h
\end{aligned}
$$

$A=2 \pi r h+2 \pi r^{2}$
$V=\pi r^{2} h$

Volume of regular prisms

In any regular prism (including cuboids and cylinders),
Volume $=$ area of base (or cross-section) \times height
In a cuboid, area of base $=$ area of rectangle $=l b$. So $V=l b h$
In a cylinder, area of base $=$ area of circle $=\pi r^{2}$. So $V=\pi r^{2} h$
Surface area of a cylinder: consists of two circles and a curved face, and can be opened as shown below. You will see that the curved face is a rectangle. The length of the rectangle is equal to the circle's circumference.

37 -

[^0]Surface area $=$ area of rectangle $+2 \times$ area of circle

$$
\begin{aligned}
& =2 \pi r \times h+2 \times \pi r^{2} \\
& =2 \pi r h+2 \pi r^{2}=2\{r(h+r) \quad)
\end{aligned}
$$

Surface area of a cone: consists of a circle and a curved face, and can be opened as shown below. You will see that the curved face is a sector. The length of the arc is equal to the circle's circumference.

Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 4 \times 3=6 \mathrm{~cm}^{2}$
Area of rectangle $\mathrm{ABED}=4 \times 10=40 \mathrm{~cm}^{2}$
Area of rectangle CBEF $=5 \times 10=50 \mathrm{~cm}^{2}$
Area of rectangle $\mathrm{CADF}=3 \times 10=30 \mathrm{~cm}^{2}$
\therefore Surface area $=2 \times 6+40+50+30=132 \mathrm{~cm}^{2}$
(b) Volume $=$ area of base \times length of prism

$$
\begin{aligned}
& =\text { area of } \triangle \mathrm{ABC} \times \text { length of prism } \\
& =6 \times 10=60 \mathrm{~cm}^{3}
\end{aligned}
$$

Example 4 An object consists of a cylinder and a cone with the same diameter 14 cm . The height (H) of the cylinder is 40 cm
and the height (h) of the cone is 24 cm . Taking $\pi=\frac{22}{7}$, calculate:
(a) the slant length (l) of the cone
(b) the total surface area of the object
(c) the total volume of the object

(a) By Pythagoras theorem,

$$
\begin{aligned}
l^{2} & =r^{2}+h^{2} \\
l & =\sqrt{r^{2}+h^{2}}=\sqrt{7^{2}+24^{2}} \\
& =\sqrt{49+576}=\sqrt{625}=25 \mathrm{~cm}
\end{aligned}
$$

(b) Total surface area $=$ area of circle + area of curved face of cylinder

$$
\begin{aligned}
& \quad+\text { area of curved face of cone } \\
& =\pi r^{2}+2 \pi r H+\pi r l=\pi r(r+2 H+l) \\
& =\frac{22}{7} \times 7 \times(7+2 \times 40+25)=22 \times 112=2464 \mathrm{~cm}^{2}
\end{aligned}
$$

(c) Total volume $=$ volume of cylinder + volume of cone

$$
=\pi r^{2} H+\frac{1}{3} \pi r^{2} h=\pi r^{2}\left(H+\frac{1}{3} h\right)
$$

Exercise 14
1 The diagran below ${ }^{4}$ shbws the floor of a room. OABC and OCDE are trapeziums.

OAE is a sector of a circle with centre O , and $\angle \mathrm{AOE}=106^{\circ}$. Taking $\pi=3.142$, calculate: (a) the perimeter (b) the area

2 OABC is a quadrant of radius 7 cm . Taking $\pi=\frac{22}{7}$, calculate he shaded area.
3 Take π to be $\frac{22}{7}$. The diagram below shows a cross section of a metallic blade that can be fitted to a solid cylindrical rod.

(b) the area of quadrilateral ABCD
(c) the volume of the prism

23 Geometrical Constructions and Loci

Never rub out arcs or construction lines because these show how you obtained your result.

(ア)Basic Constructions

To bisect a line

Given a line AB.

1. With the centre at A and a radius of more than half the length of $A B$, draw an arc on each side.
2. With the centre at B and the same radius, draw another arc on each side to cut the first arc.
3. Join both points of intersection of the arcs.

The bisector is perpendicular to AB and any point on the bisector is equidistant from A and B.

To bisect an angle

Given an angle ABC .

1. With the centre at B and a suitable radius, draw an arc to cut BA at D and BC at E .
2. With the centre at D and E , and a suitable and the same radius, draw arcs to intersect at F .
3. Draw a line from B through F.
$\angle \mathrm{ABF}=\angle \mathrm{CBF}$
Any point on the bisector is equidistant from the lines $A B$ and $B C$.

To construct a perpendicular line through a particular point outside a given line

 Given a line $A B$ and a point P.1. With the centre at P , draw an arc to cut AB at C and D.
2. With the centre at C and D, and a radius of more than half the length of CD, draw arcs to intersect at E .
3. Draw a line from P through E.

This construction can be used even if a given point is on the line $A B$.

(イ) Constructing

Given three sides

e.g. $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$.

1. Draw a straight line $A B$ of length 6 cm .
2. With A as the centre and radius of 5 cm , draw an arc.
3. With B as the centre and radius of 4 cm , draw an arc
to cut the first arc The intersection is C.
4. Join AC and BC.

Given two sides and the included angle

e.g. $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=3.5 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$.

1. Draw a straight line $A B$ of length 5 cm .
2. Measure the included angle 60° at B with a protractor, mark it and draw a straight line $B C$ of length 3.5 cm .
3. Complete the triangle by joining AC.

triangles

conditions.
Example 1 The points A and B are 4 cm apart. Find the set of points that are less than 3 cm from A but are closer to B than A.

First, to find the points which are less than 3 cm from A, draw an arc of radius 3 cm .
Then, to find the points which are closer to B than A , draw the perpendicular bisector of AB .
Here the perpendicular bisector is a dotted line.
Points on it are not included because they are the same distance from A and B.
Finally, shade the region which satisfies the conditions.

Exercise 15

(a) Construct $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and 5 cm .
(b) Bisect $\angle \mathrm{ABC}$ and $\angle \mathrm{CAB}$, and mark the intersection as O .
(c) With O as the centre and radius to touch AB , draw a circle.

2 (a) 4 cm onstruct $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=6 \mathrm{~cm}, \angle \mathrm{ABC}=40^{\circ}$ and $\angle \mathrm{CAB}=55^{\circ}$.
(b) Praw perpendicular bisectors of all the sides and mark the intersection as O .
(c) wifh O as the centre and radius of the length of OA , draw a circle.

3 (a) Construct a triangle ABC in which $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\angle \mathrm{ABC}=40^{\circ}$
(b) On the same diagram, draw the locus of points within the triangle which are
(i) 6 cm from B .
(ii) equidistant from AC and AB .
(c) P is a point inside $\triangle A B C$ such that it is 6 cm from B, and equidistant from
$A B$ and $A C$. Label the point P.
(d) A point Q lies inside $\triangle A B C$ such that its distance from B is less than 6 cm and it is nearer to AC than to AB . Shade the region in which Q must lie.
e.g. $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=6 \mathrm{~cm}, \angle \mathrm{BAC}=40^{\circ}$ and $\angle \mathrm{ABC}=60^{\circ}$.

1. Draw a straight line $A B$ of length 6 cm .
2. Measure angle 40° at A and angle 60° at B with a protractor and draw AC and BC to meet at C .

(ウ) Loci

'Loci' is the plural of 'locus'. A locus is a set of points which satisfy one or more given

24 Trigonometry

Trigonometry deals with the relations between the sides and angles of a triangle.

(ア)Trigonometric Ratios

Ratio of sides of a right-angled triangle: There are three ratios in a right-angled triangle, namely sine(sin), cosine(cos) and tangent (\tan), defined as follows.
$\sin \theta=\frac{\text { Opposite }(\mathrm{SOH})}{\text { Hypotenuse }^{(\mathrm{CAH})}}$
$\cos \theta=\frac{\left.\text { Adjacent }^{\text {Hypotenus }} \mathrm{TOA}\right)}{}$
$\tan \theta=\frac{\text { Opposite }}{\text { Adjacent }}$

SOH CAH TOA is useful to memorise the three ratios.
e.g. In the triangle on the right,
$\sin \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{3}{5} \quad \cos \mathrm{~A}=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{4}{5}$
$\tan \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3}{4}$
$\sin \mathrm{B}=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{4}{5} \quad \cos \mathrm{~B}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{3}{5}$
$\tan B=\frac{A C}{B C}=\frac{4}{3}$

Example 1 Calculate the value of x in each of the following.

(a) $\sin 30^{\circ}=\frac{5}{x} \quad \therefore x=\frac{5}{\sin 30^{\circ}}=\frac{5}{0.5}=10 \mathrm{~cm}$
(b)

$$
\cos 55^{\circ}=\frac{x}{6} \quad \therefore x=6 \times \cos 55^{\circ}=6 \times 0.5736=3.4416=3.44 \mathrm{~cm}(\text { to } 3 \mathrm{sf})
$$

(c)

$$
\tan 40^{\circ}=\frac{x}{10} \quad \therefore x=10 \times \tan 40^{\circ}=10 \times 0.8391=8.391=8.39 \mathrm{~cm}(\text { to } 3 \mathrm{sf})
$$

The sine, cosine and tangent ratios can also be used to find the size of an unknown angle in a right-angled triangle. $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$ give the angle which has a sine, cosine and tangent of θ and are the inverse of the sine, cosine and tangent respectively.

Example 2 Calculate the value of θ in each of the following.

(a) $\sin \theta=\frac{3}{5} \quad \therefore \theta=\sin ^{-1} \frac{3}{5}=36.86^{\circ}=36.9^{\circ}$ (to 1 dp)
(b) $\cos \theta=\frac{2}{4}=\frac{1}{2} \quad \therefore \theta=\cos ^{-1} \frac{1}{2}=60^{\circ}$
(c) $\tan \theta=\frac{11}{6} \quad \therefore \theta=\tan ^{-1} \frac{11}{6}=61.38^{\circ}=61.4^{\circ}($ to 1 dp$)$

Angles of elevation: are measured upward from the horizontal when looking up to a point.

Example 3 The angle of elevation of the top

of a pole from the eye-level of the boy standing
10 m away from the foot of the pole is 30°.
If the height of the boy up to eye-level is 1.5 m , find the height of the pole.

Identity: The equation $\sin ^{2} \theta+\cos ^{2} \theta=1$ is true for all values of θ and it is called the identity.
Example 4 Given that $\sin \theta=0.6$ and $0^{\circ} \leq \theta \leq 90^{\circ}$, find the value of $\cos \theta$.
$\cos ^{2} \theta=1-\sin ^{2} \theta=1-0.6^{2}=1-0.36=0.64$
$\therefore \cos \theta=\sqrt{0.64}=0.8 \quad$ (when $0^{\circ} \leq \theta \leq 90^{\circ}, \cos \theta$ is positive.)

(イ) Non-right-angled Triangles

Even if a triangle does not contain a right angle, sine and cosine can be used to solve problems involving any triangle.
Obtuse angles: An obtuse angle cannot occur in a right-angled triangle. So we must redefine the sine and cosine for such angles. In the diagram, OP makes an obtuse angle θ with the positive x-axis. PN is perpendicular to ON . Let $\mathrm{PN}=+b$ and $\mathrm{ON}=-a$. Then we define:

$$
\sin \theta=\frac{\mathrm{NP}}{\mathrm{OP}}=\frac{+b}{\mathrm{OP}} \quad \cos \theta=\frac{\mathrm{ON}}{\mathrm{OP}}=\frac{-a}{\mathrm{OP}}
$$

Therefore if θ is obtuse,

$$
\sin \left(180^{\circ}-\theta\right)=\sin \theta \quad \cos \left(180^{\circ}-\theta\right)=-\cos \theta_{\mathrm{A}}
$$

Example 5 In the diagram, ABC is a right-angled
triangle in which $\mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{AC}=13 \mathrm{~cm} . \mathrm{BCD}$
is a straight line, find $\sin \angle A C D$.

$$
\sin \angle \mathrm{ACD}=\sin \left(180^{\circ}-\angle \mathrm{ACB}\right)=\sin \angle \mathrm{ACB}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{5}{13}
$$

Area of a triangle: The common formula $\frac{1}{2} \times$ base \times height is not always convenient as we may not know the height. We are developing this formula further so that we can calculate the area of a triangle given two sides and an included angle.

Suppose the known sides are a and b, and C is the angle between them.
Side a is taken as the base. The perpendicular height is given by $\sin \mathrm{C}=\frac{h}{b}$.
Therefore $h=b \operatorname{sinC}$. Then

$$
\text { Area of } \triangle \mathrm{ABC}=\frac{1}{2} a b \sin C
$$

i.e. Area of a triangle $=$ half \times product of any two sides \times sine of the included angle The area of $\triangle \mathrm{ABC}$ can be written as $\frac{1}{2} a b \sin \mathrm{C}, \frac{1}{2} b c \sin \mathrm{~A}$ or $\frac{1}{2} c a \sin \mathrm{~B}$.
Example 6 In $\triangle \mathrm{ABC}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$ and $\angle \mathrm{BAC}=40^{\circ}$. Find the area of the triangle.

$$
\begin{aligned}
& \text { Area }=\frac{1}{2} \mathrm{AB} \times \mathrm{AC} \times \sin \angle \mathrm{BAC} \\
& \quad=\frac{1}{2} \times 6 \times 5 \times \sin 40^{\circ} \\
& =9.6418=9.64 \mathrm{~cm}^{2}(\text { to } 3 \mathrm{sf})
\end{aligned}
$$

Sine rule:

$$
\frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}} \text { or } \frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c}
$$

The area of $\triangle \mathrm{ABC}$ can be written as $\frac{1}{2} a b \sin \mathrm{C}, \frac{1}{2} b c \sin \mathrm{~A}$ or $\frac{1}{2} c a \sin \mathrm{~B}$.
It follows that $\frac{1}{2} b c \sin \mathrm{~A}=\frac{1}{2} c a \sin \mathrm{~B}=\frac{1}{2} a b \sin \mathrm{C}$

Dividing by $\frac{1}{2} a b c$ gives $\frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}}$.
This can be rearranged as $\frac{\sin \mathrm{A}}{a}=\frac{\sin \mathrm{B}}{b}=\frac{\sin \mathrm{C}}{c}$
The sine rule can be used to find a side when one side and any two angles are known, or to find an angle when two sides and an opposite angle are known.
The sine rule shows that the sides are proportional to the sines of the opposite angles, i.e. the shortest side is opposite the smallest angle, etc.

Example 7 In $\triangle \mathrm{ABC}, \mathrm{AB}=10 \mathrm{~cm}, \angle \mathrm{CAB}=65^{\circ}$ and $\angle A B C=40^{\circ}$. Calculate the lengths of $B C$ and $A C$.

$$
\angle \mathrm{ACB}=180^{\circ}-65^{\circ}-40^{\circ}=75^{\circ}
$$

Use the sine rule: $\frac{\mathrm{BC}}{\sin 65^{\circ}}=\frac{\mathrm{AC}}{\sin 40^{\circ}}=\frac{10}{\sin 75^{\circ}}$

$$
\begin{aligned}
& \mathrm{BC}=\frac{10 \times \sin 65^{\circ}}{\sin 75^{\circ}}=9.3827=9.38 \mathrm{~cm}(\text { to } 3 \mathrm{sf}) \\
& \mathrm{AC}=\frac{10 \times \sin 40^{\circ}}{\sin 75^{\circ}}=6.6546=6.65 \mathrm{~cm}(\text { to } 3 \mathrm{sf})
\end{aligned}
$$

Example 8 In $\triangle \mathrm{ABC}, \mathrm{AC}=6 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\angle \mathrm{A}=60^{\circ}$. Calculate the size of $\angle \mathrm{B}$.

The sine rule gives $\frac{\sin \mathrm{A}}{\mathrm{BC}}=\frac{\sin \mathrm{B}}{\mathrm{AC}}$

$$
\sin B=\frac{A C \times \sin A}{B C}=\frac{6 \times \sin 60^{\circ}}{8}=0.6495
$$

$$
\therefore B=\sin ^{-1} 0.6495=40.5^{\circ}
$$

Cosine rule: $c^{2}=a^{2}+b^{2}-2 a b \cos C$

This formula can be rearranged as $\cos \mathrm{C}=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$.
This cosine rule can be used to find the third side when two sides and the included angle are known, or to find an angle when all the three sides are known.

Example 9 Find x in the diagram.

$$
\begin{aligned}
x^{2} & =5^{2}+7^{2}-2 \times 5 \times 7 \times \cos 40^{\circ} \\
& =25+49-70 \times \cos 40^{\circ} \\
& =74-53.62=20.38 \\
\therefore x & =\sqrt{20.38}=4.5 \mathrm{~cm}
\end{aligned}
$$

Example 10 Find the smallest angle in the triangle which has sides of length $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 13 cm .

The smallest angle in a triangle is opposite the shortest side.
In the given triangle, the smallest angle is opposite the 6 cm side.
Let this angle be C. Then $c=6$, and we can take $a=8$ and $b=13$.
$\cos \mathrm{C}=\frac{8^{2}+13^{2}-6^{2}}{2 \times 8 \times 13}=\frac{64+169-36}{208}=\frac{197}{208}$
$\therefore \hat{\mathrm{C}}=\cos ^{-1} \frac{197}{208}=18.7^{\circ}$

Exercise 16

1 In the diagram on the right, CDE is a vertical line and AEB is a horizontal line. Given that $\mathrm{EB}=4.2 \mathrm{~m}, \mathrm{ED}=$ $2.5 \mathrm{~m}, \mathrm{DC}=3.5 \mathrm{~m}$ and $\angle \mathrm{CAE}=42^{\circ}$, calculate:
(a) DB
(b) $\triangle \mathrm{ECB}$
(c) AC

2 In the diagram on the right, BCD is a vertical line and $A B$ is a horizontal line. The point A is 20 cm away from B, the angle of elevation of C from A is 25° and the angle of elevation of D from A is 40°. Find the length of $C D$, correct to 2 significant figures.
3 In the diagram below, write down the value of $\cos \theta$.

4 In the diagram, ABC is a segment of a circle radius 8 cm and centre O , where $\angle \mathrm{AOC}=54^{\circ}$. Find the area of the segment.
5 In the diagrams, find the labelled sides and angles.
(a)

(e)

25 Matrices

A matrix is an array of numbers. The numbers of an array are called elements.

(ア) Calculations of Matrices

Order of a matrix: is given by "the number of rows by the number of columns".
e.g. $\left(\begin{array}{ll}1 & 2\end{array}\right)$ is a 1×2 matrix. $\binom{3}{2}$ is a 2×1 matrix.

$$
\left(\begin{array}{ll}
4 & 2 \\
1 & 3
\end{array}\right) \text { is a } 2 \times 2 \text { matrix. }\left(\begin{array}{cccc}
1 & 2 & -2 & 10 \\
5 & 1 & 9 & -4 \\
3 & 4 & 7 & -7
\end{array}\right) \text { is a } 3 \times 4 \text { matrix. }
$$

Addition and subtraction of matrices: Matrices of the same order can be added or

$\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)+\left(\begin{array}{cc}3 & -2 \\ 0 & 4 \\ -1 & 2\end{array}\right)-\left(\begin{array}{cc}6 & -4 \\ -3 & 2 \\ 2 & 0\end{array}\right)$
(a) $\left(\begin{array}{cc}1+2 & 4+3 \\ 2+(-3) & 3+1\end{array}\right)=\left(\begin{array}{cc}3 & 7 \\ -1 & 4\end{array}\right)$
(b) $\left(\begin{array}{cc}1+3-6 & 4+(-2)-(-4) \\ 2+0-(-3) & 5+4-2 \\ 3+(-1)-2 & 6+2-0\end{array}\right)=\left(\begin{array}{cc}-2 & 6 \\ 5 & 7 \\ 0 & 8\end{array}\right)$

Scalar multiplication of a matrix: (A scalar is a number written in front of a matrix.) Each element of that matrix is multiplied by that number.

$$
\text { e.g. } 3\left(\begin{array}{cc}
2 & 0 \\
3 & -1
\end{array}\right)=\left(\begin{array}{cc}
3 \times 2 & 3 \times 0 \\
3 \times 3 & 3 \times(-1)
\end{array}\right)=\left(\begin{array}{cc}
6 & 0 \\
9 & -3
\end{array}\right)
$$

Multiplication of matrices: Matrices can be multiplied if the number of columns in the first matrix is equal to the number of rows in the second matrix. It is done by laying each row of the first matrix against each column of the second matrix, multiplying the pairs of elements and adding the results together to make a single matrix. The order of the product of two matrices can be obtained from the number of rows in the first matrix by the number of columns in the second matrix.
In general, 2×2 matrix $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and 2×2 matrix $\mathrm{B}=\left(\begin{array}{ll}p & r \\ q & s\end{array}\right)$

Example
(b) $\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 0 \\ 2 & 4\end{array}\right)$
$\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)$

(b) $\left(\begin{array}{ll}1 & 2\end{array}\right) \times\left(\begin{array}{ll}3 & 0 \\ 2 & 4\end{array}\right)=(1 \times 3+2 \times 2 \quad 1 \times 0+2 \times 4)=\left(\begin{array}{ll}7 & 8\end{array}\right)$ $\underset{\sim}{2 \times(2)} \quad \stackrel{\text { order of product }}{\longrightarrow}(1 \times 2)$
(c) $\underset{\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)}{(2)} \times \underset{2 \times\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)}{\left(\begin{array}{cc}(2)\end{array}\right.} \underset{\substack{1 \times 0+3 \times 1 \\ 2 \times 0+4 \times 1 \\ 2 \times(-1)+3 \times 2 \\ \text { order of product } \\ 2 \times 2)}}{\left(\begin{array}{ll}1 \times(-1)+4 \times 2\end{array}\right)}=\left(\begin{array}{ll}3 & 5 \\ 4 & 6\end{array}\right)$

Example 3 If $\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{cc}-1 & x \\ y & -2\end{array}\right)=\left(\begin{array}{ll}4 & -12\end{array}\right)$, find x and y.

$$
\text { Multiply }(-2+3 y \quad 2 x-6)=\left(\begin{array}{ll}
4 & -12
\end{array}\right)
$$

So $-2+3 y=4$ and $2 x-6=-12 \quad \therefore x=-3$ and $y=2$

(イ)Inverse Matrix

Identity matrix: is a square matrix whose elements in the main diagonal (from the top left corner to the bottom right corner) are all ' 1 ' and the others are all ' 0 ' and is denoted by " I ".
e.g. $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the 2×2 identity matrix. $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is the 3×3 identity matrix.

For any square matrix $\mathrm{A}, \mathbf{A} \boldsymbol{I}=\mathbf{I} \mathbf{A}=\mathbf{A}$.
Determinant of a matrix: is the product of elements in the main diagonal minus the product of the elements in the other diagonal (from the top right corner to the bottom left corner). The determinant of a matrix A is denoted by "det A".

In general, if $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \operatorname{det} \mathrm{A}=a d-b c$
e.g. If $\mathrm{A}=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right), \operatorname{det} \mathrm{A}=2 \times 4-3 \times 1=8-3=5$

A matrix whose determinant is zero is called a singular matrix.
Inverse of a matrix: is another matrix such that when the two matrices are multiplied together in any order, the result is the identity matrix. A^{-1} is the inverse of a matrix A if $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\boldsymbol{I}$.
In general, if $\mathrm{A}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mathrm{A}^{-1}=\frac{1}{\operatorname{det} \mathrm{~A}}\left(\begin{array}{cc}d & -b \\ -c\end{array}\right)$
e.g. If $\mathrm{A}=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right), \mathrm{A}^{-1}=\frac{1}{5}\left(\begin{array}{cc}4 & -3 \\ -1 & 2\end{array}\right)=\left(\begin{array}{cc}\frac{4}{5} & -\frac{3}{5} \\ -\frac{1}{5} & \frac{2}{5}\end{array}\right)$

A singular matrix has no inverse because the determinant is zero.
e.g. The determinant of $\left(\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right)$ is $2 \times 2-4 \times 1=0$. So the inverse cannot be found.

Matrix method of solving simultaneous equations: Matrices can be used to solve simultaneous linear equations.

Example 4 Solve $2 x-y=5$

$$
x-2 y=4
$$

Write the equations in matrix form. $\left(\begin{array}{cc}2 & -1 \\ 1 & -2\end{array}\right)\binom{x}{y}=\binom{5}{4}$

$$
\text { Let } A=\left(\begin{array}{ll}
2 & -1 \\
1 & -2
\end{array}\right)
$$

Then $\operatorname{det} \mathrm{A}=2 \times(-2)-(-1) \times 1=-4+1=-3$. So $\mathrm{A}^{-1}=\frac{1}{-3}\left(\begin{array}{ll}-2 & 1 \\ -1 & 2\end{array}\right)$.
Pre-multiply both sides by A^{-1}. (i.e. A^{-1} goes on the left.)

$$
\frac{1}{-3}\left(\begin{array}{ll}
-2 & 1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & -1 \\
1 & -2
\end{array}\right)\binom{x}{y}=\frac{1}{-3}\left(\begin{array}{ll}
-2 & 1 \\
-1 & 2
\end{array}\right)\binom{5}{4}
$$

Here $\mathrm{A}^{-1} \mathrm{~A}=I$.

$$
\begin{aligned}
& I\binom{x}{y}=\binom{x}{y}=\frac{1}{-3}\binom{-10+4}{-5+8}=\frac{1}{-3}\binom{-6}{3}=\binom{2}{-1} \\
& \therefore x=2 \text { and } y=-1
\end{aligned}
$$

Exercise 17

1 Simplify:
(a) $\binom{2}{3}+\binom{1}{-2}$
(b) $\left(\begin{array}{lll}5 & 2 & -4\end{array}\right)-\left(\begin{array}{lll}2 & -3 & 1\end{array}\right)$
$2\left(\begin{array}{cc}0 & -3 \\ 2 & 2\end{array}\right)+3\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)$
(d) $3(2 \quad-1)-2(-3$
4) (e) $4\left(\begin{array}{lll}0 & 2 & 4 \\ 1 & 3 & 5\end{array}\right)-2\left(\begin{array}{ccc}3 & 2 & 0 \\ -2 & 1 & 4\end{array}\right)$
2 Express as single matrices:
(a) $\left(\begin{array}{ll}2 & 1\end{array}\right)\binom{3}{2}$
(b) $\binom{3}{2}\left(\begin{array}{ll}2 & 1\end{array}\right)$
(c)
$\left(\begin{array}{ll}2 & 1\end{array}\right)\left(\begin{array}{cc}-2 & 2 \\ 1 & -3\end{array}\right)$
(d) $\left(\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right)\left(\begin{array}{cc}2 & 3 \\ -1 & 1\end{array}\right)$ (e) $\left(\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right)\left(\begin{array}{ccc}2 & -3 & 4 \\ 2 & 1 & -2\end{array}\right)$

3 Given that $\mathrm{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{cc}-1 & -2 \\ 2 & 2\end{array}\right)$, calculate: (a) $\mathrm{A}+\mathrm{B}$ (b) $\mathrm{A}-2 \mathrm{~B}$
(c) $\mathrm{B}+3 \mathrm{~A}$ (d) AB (e) $\mathrm{BA}(\mathrm{f}) \mathrm{A}^{2}-\mathrm{B}^{2}$
$4 \mathrm{~A}=\left(\begin{array}{cc}1 & 2 \\ a & -1\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ll}2 & 1 \\ 1 & b\end{array}\right)$. If $\mathrm{AB}=\mathrm{BA}$, find the values of a and b.

5 If the determinant of a matrix $\left(\begin{array}{cc}2 a & -4 \\ a & 1\end{array}\right)$ is 12 , find the value of a.
6 If a matrix $\left(\begin{array}{cc}x & 3 \\ x+2 & x+8\end{array}\right)$ does not have the inverse, find the value of x.
7 Using matrices, solve the simultaneous equations.
(a) $x-y=1$
(b) $2 x+y=7$
(c) $2 x-3 y=14$
$2 x+5 y=16$
$3 x-2 y=7$
$3 x+2 y=-5$

26 Vectors

(ア) Basic Vector

Scalar and vector quantities: There are two types of quantities.
A scalar is a quantity that has magnitude only.
A vector is a quantity that has both magnitude and direction.
Notation: A vector can be drawn as a directed line. The length of a line represents the magnitude of the vector and the arrow indicates its direction.

This vector can be written as $\overrightarrow{\mathbf{A B}}$.
It can also be written as $\underline{\boldsymbol{a}}$.
A vector can be written as a column vector, in the form
$\binom{x}{y}$.

The top number (x) in a column vector represents movement parallel to the x-axis and the bottom number (y) represents movement parallel to the y-axis.
Movement to the right and up is positive, and movement to the left and down is negative.

$$
\overrightarrow{\mathrm{AB}}=-\overrightarrow{\mathrm{BA}} \quad \overrightarrow{\mathrm{CD}}=-\overrightarrow{\mathrm{DC}}
$$

Magnitude of a vector: is the length of the vector.
The magnitude of vector $\overrightarrow{\mathbf{A B}}$ is written as $|\overrightarrow{\mathbf{A B}}|$.
In general, if $\overrightarrow{\mathrm{AB}}=\binom{x}{y},|\overrightarrow{\mathrm{AB}}|=\sqrt{x^{2}+y^{2}} \quad(\because$ Pythagoras theorem

Equal vectors: are vectors whose magnitudes and directions are the same. As vectors are usually independent of position, they can start at any point.

$\underline{a}=\underline{b}$
$\underline{a} \neq \underline{c}$
$\underline{a} \neq \underline{d} \quad(\underline{a}=-\underline{d})$

Scalar multiplication:
is done by expressing a
vector as a column vector and multiplying each number by the scalar.
e.g. $2\binom{4}{2}=\binom{2 \times 4}{2 \times 2}=\binom{8}{4}$

$-\frac{1}{2}\binom{4}{2}=\binom{-\frac{1}{2} \times 4}{-\frac{1}{2} \times 2}=\binom{-2}{-1}$
Addition and subtraction of vectors: Vectors can be added or subtracted.
To add vectors \underline{a} and \underline{b}, draw the second vector (\underline{b}) at the end of the first vector (\underline{a}) and draw a new vector from the beginning of \underline{a} to the end of \underline{b}.

$\underline{a}+\underline{b}=\underline{b}+\underline{a}$
To subtract vectors $(\underline{a}-\underline{b})$, let $\underline{a}+(-\underline{b})$. So the addition above can be applied.

To add or subtract column vectors, add or subtract the top number in each vector, then add or subtract the bottom number in each vector.
e.g. $\underline{a}=\binom{2}{-3} \quad \underline{b}=\binom{4}{2}$

$$
\begin{aligned}
& \underline{a}+\underline{b}=\binom{2}{-3}+\binom{4}{2}=\binom{2+4}{-3+2}=\binom{6}{-1} \quad \underline{b}+\underline{a}=\binom{4}{2}+\binom{2}{-3}=\binom{4+2}{2+-3}=\binom{6}{-1} \\
& \underline{a}-\underline{b}=\binom{2}{-3}-\binom{4}{2}=\binom{2-4}{-3-2}=\binom{-2}{-5} \quad \underline{b}-\underline{a}=\binom{4}{2}-\binom{2}{-3}=\binom{4-2}{2-(-3)}=\binom{2}{5}
\end{aligned}
$$

(イ)Vector Geometry

Position vectors: are vectors which start at a known point (usually origin), and its finishing point gives a position relative to that starting point.
e.g. $\quad y$

Vector geometry: Vectors can be used to solve geometrical problems.
Example 1. In the figure, find directed line equal to the
following: (a) $\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{EC}}$
(b) $\overrightarrow{\mathrm{BD}}+\overrightarrow{\mathrm{DE}}$
(c) $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BD}}+\overrightarrow{\mathrm{D}}$
(a) $\overrightarrow{\mathrm{AE}}+\overrightarrow{\mathrm{EC}}=\overrightarrow{\mathrm{AC}}$
(b) $\overrightarrow{\mathrm{BD}}+\overrightarrow{\mathrm{DE}}=\overrightarrow{\mathrm{BE}}$

(c) $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BD}}+\overrightarrow{\mathrm{DC}}=\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{DC}}=\overrightarrow{\mathrm{AC}}$

Example 2 The coordinates of P are $(3,-1)$ and the coordinates of Q are $(1,3)$. Find the vector $\overrightarrow{\mathrm{PQ}}$.

$$
\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{PO}}+\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}}=-\binom{3}{-1}+\binom{1}{3}=\binom{-2}{4}
$$

Example 3 OACB is a parallelogram in which $\overrightarrow{\mathrm{OA}}=\underline{a}$ and $\overrightarrow{\mathrm{OB}}=\underline{b} . \mathrm{M}$ is the mid-point of BC and N is a point on AC such that $\mathrm{AN}: \mathrm{NC}=2: 1$. Express the following in terms of \underline{a} and / or \underline{b}.

(a) $\overrightarrow{\mathrm{BC}}$
(b) $\overrightarrow{\mathbf{B M}}$
(c) $\overrightarrow{\mathrm{OM}}$
(d) $\overrightarrow{\mathrm{ON}}$
(e) $\overrightarrow{\mathrm{MN}}$
(a) $\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{OA}}=\underline{a}$
(b) $\overrightarrow{\mathrm{BM}}=\frac{1}{2} \overrightarrow{\mathrm{BC}}=\frac{1}{2} \underline{a}$
(c) $\overrightarrow{\mathrm{OM}}=\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BM}}=\underline{b}+\frac{1}{2} \underline{a}$
(d) $\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AN}}=\overrightarrow{\mathrm{OA}}+\frac{2}{3} \overrightarrow{\mathrm{AC}}=\underline{a}+\frac{2}{3} \underline{b}$
(e) $\overrightarrow{\mathrm{MN}}=\overrightarrow{\mathrm{MO}}+\overrightarrow{\mathrm{ON}}=-\overrightarrow{\mathrm{OM}}+\overrightarrow{\mathrm{ON}}=-\left(\underline{b}+\frac{1}{2} \underline{a}\right)+\underline{a}+\frac{2}{3} \underline{b}$

$$
=\underline{a}-\frac{1}{2} \underline{a}+\frac{2}{3} \underline{b}-\underline{b}=\frac{1}{2} \underline{a}-\frac{1}{3} \underline{b}
$$

Example 4 In the diagram, $\overrightarrow{\mathrm{OP}}=\underline{p}, \overrightarrow{\mathrm{OQ}}=\underline{q}, \overrightarrow{\mathrm{OM}}=\frac{1}{3} \overrightarrow{\mathrm{OQ}}$ and $\mathrm{PN}: \mathrm{NQ}=3: 2$.
(a) Express in terms of \underline{p} and / or q. (i) $\overrightarrow{\mathrm{PQ}}$ (ii) $\overrightarrow{\mathrm{ON}}$
(b) Given that $\overrightarrow{\mathrm{OX}}=h \overrightarrow{\mathrm{ON}}$, express $\overrightarrow{\mathrm{OX}}$ in terms of p, q and h.
(c) Given also that $\overrightarrow{\mathbf{P X}}=k \overrightarrow{\mathbf{P M}}$, express $\overrightarrow{\mathbf{O X}}$ in terms of p, q and k
(d) Find the values of h and k.
(a) (i) $\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{PO}}+\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}}=-\underline{p}+\underline{q}$
(ii) $\overrightarrow{\mathrm{ON}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PN}}=\overrightarrow{\mathrm{OP}}+\frac{3}{5} \overrightarrow{\mathrm{PQ}}=\underline{p}+\frac{3}{5}(-\underline{p}+\underline{q})=\frac{2}{5} \underline{p}+\frac{3}{5} \underline{q}$
(iii) $\overrightarrow{\mathrm{PM}}=\overrightarrow{\mathrm{PO}}+\overrightarrow{\mathrm{OM}}=-\overrightarrow{\mathrm{OP}}+\frac{1}{3} \overrightarrow{\mathrm{OQ}}=-\underline{p}+\frac{1}{3} \underline{q}$
(b) $\overrightarrow{\mathrm{OX}}=h \overrightarrow{\mathrm{ON}}=h\left(\frac{2}{5} \underline{p}+\frac{3}{5} \underline{q}\right)$
(c) $\overrightarrow{\mathrm{OX}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OX}}=\overrightarrow{\mathrm{OP}}+k \overrightarrow{\mathrm{PM}}=\underline{p}+k\left(-\underline{p}+\frac{1}{3} \underline{q}\right)=(1-k) \underline{p}+\frac{k}{3} \underline{q}$
(d) From (b) and (c), $h\left(\frac{2}{5} \underline{p}+\frac{3}{5} \underline{q}\right)=(1-k) \underline{p}+\frac{k}{3} \underline{q}$.

Compare the coefficients of \underline{p} and q.

$$
\begin{aligned}
& \frac{2}{5} h=1-k \\
& \frac{3}{5} h=\frac{k}{3} \ldots-\quad . \quad .-(i i)
\end{aligned}
$$

(ii) $\rightarrow k=\frac{9}{5} h$ Substitute this for k into (i) $\frac{2}{5} h=1-\frac{9}{5} h \quad \therefore h=\frac{5}{11}, k=\frac{9}{11}$

Exercise 18

1 If $\underline{a}=\binom{3}{2}$ and $\underline{b}=\binom{-1}{4}$, find: (a) $\underline{a}+\underline{b}$ (b) $\underline{a}-\underline{b}$ (c) $3 \underline{a}+2 \underline{b}$ (d) $|\underline{a}| \quad$ (e)
$|\underline{b}|$ (f) $|\underline{a}+\underline{b}|$ (g) $|\underline{a}-\underline{b}|$
2 In $\triangle \mathrm{OAB}, \overrightarrow{\mathrm{OA}}=\underline{a}$ and $\overrightarrow{\mathrm{OB}}=\underline{b}$.
(a) Given that M is a point on $A B$ such that $\overrightarrow{\mathbf{A B}}=3 \overrightarrow{\mathrm{AM}}$, express in terms of \underline{a} and / or \underline{b}. i) $\overrightarrow{\mathrm{AB}}$ (ii) $\overrightarrow{\mathrm{OM}}$

(b) Given that N is the midpoint of OB , express $\overrightarrow{\mathrm{AN}}$
in terms of \underline{a} and \underline{b}.
(c) Given that $\overrightarrow{\mathbf{O M}}$ meets $\overrightarrow{\mathrm{AN}}$ at P and $\overrightarrow{\mathrm{AP}}=h \overrightarrow{\mathrm{AN}}$,
express $\overrightarrow{\mathbf{O P}}$ in terms of $\underline{a}, \underline{b}$ and h.

3 OACB is a parallelogram in which $\overrightarrow{\mathrm{OA}}=\underline{a}$ and $\overrightarrow{\mathrm{OB}}=\underline{b} \cdot \mathrm{~B}$
The point E on OA is such that $\mathrm{OE}: \mathrm{EA}=1: 2$.
(a) Express in terms of \underline{a} and / or \underline{b}. (i) $\overrightarrow{\mathrm{OE}}$ (ii) $\overrightarrow{\mathrm{BE}}$
(b) OC and BE meet at F . Given that $\overrightarrow{\mathrm{BF}}=k \overrightarrow{\mathrm{BE}}$,
 express in terms of $\underline{a}, \underline{b}$ and k. (i) $\overrightarrow{\mathrm{BF}}$ (ii) $\overrightarrow{\mathrm{OF}}$
(c) Given also that $\overrightarrow{\mathrm{OF}}=h \overrightarrow{\mathrm{OC}}$, express $\overrightarrow{\mathrm{OF}}$ in terms of $\underline{a}, \underline{b}$ and h.
(d) Find the values of h and k.
(e) Find the ratio of OF : OC

4 OABC is parallelogram in which $\overrightarrow{\mathrm{OA}}=\underline{a}$ and $\overrightarrow{\mathrm{OC}}=\underline{c}$. The point D is on AB such that $\mathrm{AD}: \mathrm{DB}=2: 1$. When the line OD is produced, it meets the line CB at E such that $\overrightarrow{\mathrm{DE}}=h \overrightarrow{\mathrm{OD}}$ and $\overrightarrow{\mathrm{BE}}=k \overrightarrow{\mathrm{CB}}$.
(a) $\overrightarrow{\mathrm{BE}}$ in terms of \underline{a} and k
(b) $\overrightarrow{\mathrm{DE}}$ in terms of $\underline{a}, \underline{c}$ and h

(c) the values of h and k

27 Transformation

A transformation is a geometrical operation which maps a set of points (object) onto another set (image). Transformations are described matrices.

(ア)Translation

A translation is a transformation which moves every point of the object in a straight line to another position. The translated image is the same size and shape as the object. A translation is usually denoted by T .
A translation can be described by a column vector: $\mathrm{T}=\binom{x}{y}$.

Example 1 What is the image A^{\prime} of the point $\mathrm{A}(-1,1)$ under the translation $\mathrm{T}=\binom{4}{3}$?
The position vector of A is $\binom{-1}{1}$.
Then the position vector of A^{\prime} is given
by $\binom{-1}{1}+\binom{4}{3}=\binom{3}{4}$.

So the coordinates of A' are $(3,4)$
Example 2 If the point $(3,-2)$ is translated to $(5,-5)$, what is the translation?
$\binom{3}{-2}+\mathrm{T}=\binom{5}{-5} \quad \therefore \mathrm{~T}=\binom{5}{-5}-\binom{3}{-2}=\binom{2}{-3}$

(イ) Transformations Represented by 2×2 Matrices

A translation is the only transformation described by a column vector. All the other transformations are described by 2×2 matrices.

The image $\mathrm{A}^{\prime}\left(x^{\prime}, y^{\prime}\right)$ of a point $\mathrm{A}(x, y)$ under a transformation P is found by premultiplying its position vector $\binom{x}{y}$ by the matrix $\mathrm{P}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

$$
\mathrm{A}^{\prime}=\mathrm{PA} \quad\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y} \quad \therefore\left(x^{\prime}, y^{\prime}\right)=(a x+b y, c x+d y)
$$

Example 3 Find the 2×2 matrix which maps the points $(1,1)$ and $(0,-2)$ onto the points $(3,-1)$ and $(-2,4)$ respectively.

Let the matrix be $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) . \quad$ Then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{1}{1}=\binom{3}{-1}$ and

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{0}{-2}=\binom{-2}{4}
$$

These give two sets of simultaneous equations. $\binom{a+b}{c+d}=\binom{3}{-1}$ and

$$
\binom{-2 b}{-2 d}=\binom{-2}{4}
$$

Solving these: $a=2, b=1, c=1$ and $d=-2$. Therefore $\left(\begin{array}{cc}2 & 1 \\ 1 & -2\end{array}\right)$

The matrix of a transformation can be found if the images of the points $(1,0)$ and $(0,1)$
are known. Because if the matrix is $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{1}{0}=\binom{a}{c}$ which is the first column of the matrix, and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{0}{1}=\binom{b}{d}$ which is the second column of the matrix.

$$
\text { If }(1,0) \text { is mapped onto }(a, c) \text { and }(0,1) \text { onto }(b, d) \text {, the matrix is }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \text {. }
$$

Example 4 A transformation maps $(1,0)$ onto $(-1,3)$ and $(0,1)$ onto $(-2,1)$. What is the matrix of this transformation?

The first column of the matrix is $\left(\begin{array}{c}-1 \\ 3\end{array}\right.$ and the second column is $\left.\begin{array}{c}-2 \\ 1\end{array}\right)$.
Therefore the matrix is $\left(\begin{array}{cc}-1 & -2 \\ 3 & 1\end{array}\right)$.

(ウ) Reflection

A reflection is a transformation in which any two corresponding points in the object and the image are the same distance from, and at right angles to, a straight line which is called mirror line.

Example $5 \triangle \mathrm{ABC}$ has vertices $\mathrm{A}(1,5), \mathrm{B}(1,1)$ and $\mathrm{C}(3,3)$. Find the coordinates of the - 51 -
images of A, B and C under reflection in the y-axis.

The coordinates of the images are
$\mathrm{A}^{\prime}(-1,5)$
$\mathrm{B}^{\prime}(-1,1)$
$\mathrm{C}^{\prime}(-3,3)$

Example 6 Find the matrices for reflections in the following:
(a) the x-axis (b) the line $y=x$ (c) the line $y=-x$

Find the images of $\mathrm{A}(1,0)$ and $\mathrm{B}(0,1)$.
(a) The image of A is invariant as it lies on the x-axis.

The point B is mapped onto $\mathrm{B}^{\prime}(0,-1)$.
Therefore the matrix is $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

(b) The point A is mapped onto $B(0,1)$. The point B is mapped onto $\mathrm{A}(1,0)$

Therefore the matrix is $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

(c) The point A is mapped onto $\mathrm{A}^{\prime}(0,-1)$. The point B is mapped onto $\mathrm{B}^{\prime}(-1,0)$

Therefore the matrix is

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

(エ) Rotation

A rotation is a transformation in which an object is turned around a fixed point which is called the centre of rotation.

The angle through which an object is turned is called the angle of rotation. The direction of the rotation, clockwise or anticlockwise, must be stated. An anticlockwise rotation is usually said to be positive.

Only if the centre of rotation is the origin, the matrix for rotation can be found.
Example 7 Find the matrices for rotations about $\mathrm{O}(0,0)$ of the following:
a) 90° anticlockwise
b) 180° anticlockwise
(c) 270° anticlockwise

Find the images of $\mathrm{A}(1,0)$ and $\mathrm{B}(0,1)$.
(a) The point A is mapped onto $\mathrm{B}(0,1)$.

The point B is mapped onto $B^{\prime}(-1,0)$.
Therefore the matrix is $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

(b) The point A is mapped onto $\mathrm{A}^{\prime}(-1,0)$.

The point B is mapped onto $\mathrm{B}^{\prime}(0,-1)$
Therefore the matrix is $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$.

(c) The point A is mapped onto $\mathrm{A}^{\prime}(0,-1)$. The point B is mapped onto $\mathrm{A}(1,0)$

Therefore the matrix is $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$

This is equal to a rotation of 90° clockwise.
Example $8 \triangle A B C$ has vertices $A(2,2), B(4,2)$ and $C(4,4)$. Find the image of $\triangle A B C$ under a rotation about O through 90° clockwise.

From Example 7, the matrix is $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
Multiply the three column vectors for A, B and C as 2×3 matrix:

Example $9 \triangle A B C$ has vertices $A(3,2), B(6,2)$ and $C(6,0)$. Draw the image of $\triangle A B C$ under an anticlockwise rotation of 90° centre $(1,1)$.

The centre of rotation is not the origin.
So the matrix of this rotation cannot be found.
First join A to the centre $(1,1)$.
Then with angle of 90° and the same distance between A and $(1,1)$, draw A^{\prime}.
Do the same for B and C as shown in the diagram on the right.

To find the centre of rotation: Join any corresponding two points in the object and the image and construct the perpendicular bisector of each line. The point of intersection is the centre of rotation.

(才) Enlargement

An enlargement is a transformation which changes the size but not the shape of an object.

When corresponding points in the object and the image are joined by straight lines, all those lines meet at a point which is called the centre of enlargement. The centre of enlargement can be inside, on the edge of, or outside the object.
The amount by which an object is enlarged is called the scale factor $\left(=\frac{\text { image length }}{\text { object length }}\right)$.

Only if the centre of enlargement is the origin, the matrix for enlargement can be found. Example 10 Find the matrix for an enlargement centre $\mathrm{O}(0,0)$ and scale factor k.

The point $(1,0)$ is mapped onto $(k, 0)$.
The point $(0,1)$ is mapped onto $(0, k)$
Therefore the matrix is $\left(\begin{array}{cc}k & 0 \\ 0 & k\end{array}\right)$.

Example $11 \triangle A B C$ has vertices $A(1,1), B(2,1)$ and $C(-1,2)$. Find the image of $\triangle A B C$ under an enlargement with centre $O(0,0)$ and scale factor -2 .

From Example 10, the matrix is $\left(\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right)$.
Multiply the three column vectors for A, B and C as 2×3 matrix:

$\therefore \mathrm{A}^{\prime}(-2,-2), \mathrm{B}^{\prime}(-4,-2)$ and $\mathrm{C}^{\prime}(2,-4)$
When the scale factor is negative, the object and its image are on opposite sides of the centre of enlargement.

(カ)Stretch

A stretch is an enlargement in one direction from a given line. The given line is the invariant line or axis.

Example 12 The matrix S is a stretch such that the y-axis is invariant and the point (1, 2) is mapped onto (2, 2). (a) Find the matrix S. (b) If $\triangle P Q R$ has vertices $P(2,1), Q(3$, $5)$ and $R(5,1)$. Find the image of $\triangle P Q R$ under the stretch S.
(a) Take A as $(1,0)$ and B as $(0,1)$. Now OB is invariant.

If the point $(1,2)$ moves 1 unit to $(2,2), \mathrm{A}(1,0)$ also moves 1 unit to $\mathrm{A}^{\prime}(2,0)$.
Therefore the matrix is $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
(b) Multiply the three column vectors for P, Q and R as 2×3 matrix:

$$
\begin{aligned}
& \mathrm{P} \\
& \left(\begin{array}{cc}
2 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ccc}
2 & 3 & 5 \\
1 & 5 & 1
\end{array}\right)=\left(\begin{array}{ll}
4 & 6 \\
1 & 5
\end{array}\right.
\end{aligned}
$$

$$
\therefore \mathrm{P}^{\prime}(4,1), \mathrm{Q}^{\prime}(6,5) \text { and } \mathrm{R}^{\prime}(10,1)
$$

In general,

The matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right)$ represents a stretch with x-axis as the invariant and scale facto

The matrix $\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right)$ represents a stretch with y-axis as the invariant and scale factor
k.
Scale factor $=\frac{\text { distance of the image of a point from the invariant line }}{\text { distance of the point from the invariant line }}$

(キ) Shear

A shear is a transformation which keeps a fixed line (invariant line), moves all other points parallel to the invariant line and maps every straight line onto a straight line.

invariant line
In general,
the matrix $\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right)$ represents a shear with the x-axis as the invariant and shear factor k.
the matrix $\left(\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right)$ represents a shear with the y-axis as the invariant and shear facter
k.
Shear factor $=\frac{\text { distance a point moves to its image }}{\text { distance of the point from the invariant line }}$
The shear factor indicates that the distance a point moves to its image is proportional to its distance from the invariant line.

Example 13 A rectangle OXYZ with vertices $\mathrm{O}(0,0), \mathrm{X}(2,0), \mathrm{Y}(2,2)$ and $\mathrm{Z}(0,2)$ is
mapped onto the parallelogram $O X Y^{\prime} Z^{\prime}$ with $Y^{\prime}(8,2)$ and $Z^{\prime}(6,2)$.
(a) Find the matrix of the shear.
(b) Describe the shear fully.

First draw the diagram to show the information above.

Take A as $(1,0)$ and B as $(0,1)$. Now OA is invariant. (\because the x-axis is invariant) Now $\mathrm{Y}(2,2)$ moves 6 units, so $\mathrm{B}(0,1)$ moves 3 units to $\mathrm{B}^{\prime}(0,3)$. (\because proportion)

Therefore the matrix is $\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$.
(b) Shear with x-axis as the invariant line and shear factor 3 .

Exercise 19

1 A triangle ABC with vertices $\mathrm{A}(2,2), \mathrm{B}(4,2)$ and $\mathrm{C}(3,4)$ is mapped onto the triangle with vertices $\mathrm{A}^{\prime}(-2,-1), \mathrm{B}^{\prime}(0,-1)$ and $\mathrm{C}^{\prime}(-1,1)$.
(a) Draw and label the triangle and its image.
(b) Describe the transformation which maps ABC onto $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.

2 A rectangle ABCD with vertices $\mathrm{A}(1,1), \mathrm{B}(4,1), \mathrm{C}(4,3)$ and $\mathrm{D}(1,3)$ is mapped onto $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ with vertices $\mathrm{A}^{\prime}(1,-1), \mathrm{B}^{\prime}(4,-1), \mathrm{C}^{\prime}(4,-3)$ and $\mathrm{D}^{\prime}(1,-3)$.
(a) Draw and label the triangle and its image.
(b) Describe the transformation which maps ABCD onto $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$.
$3 \triangle \mathrm{ABC}$ with vertices $\mathrm{A}(1,-1), \mathrm{B}(3,-2)$ and $\mathrm{C}(3,-1)$ is mapped onto $\triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ with vertices $\mathrm{A}^{\prime}(6,0), \mathrm{B}^{\prime}(7,2)$ and $\mathrm{C}^{\prime}(6,2)$ by a rotation.
(a) Draw and label $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$.
(b) Find the centre of rotation by construction.
(c) Find the angle of rotation and its direction.
$4 \triangle A B C$ with vertices $A(1,1), B(2,1)$ and $C(2,2)$ is mapped onto $\triangle A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ with vertices $\mathrm{A}^{\prime}(1,-3), \mathrm{B}^{\prime}(2,-3)$ and $\mathrm{C}^{\prime}(2,-6)$ by a stretch. Find the matrix and the scale
factor of the stretch.
5 (a) Draw and label $\triangle \mathrm{ABC}$ whose vertices $\mathrm{A}(2,2), \mathrm{B}(4,2)$ and $\mathrm{C}(2,5)$.
(b) A transformation maps $\triangle A B C$ onto $\triangle D E F$ whose vertices $\mathrm{D}(5,2), \mathrm{E}(1,2)$ and $F(5,-4)$. Describe this transformation fully.
(c) A transformation maps $\triangle A B C$ onto $\triangle G H I$ whose vertices $G(6,2), H(8,2)$ and $\mathrm{I}(12,5)$. Describe this transformation fully.

28 Earth Geometry

The Earth is taken to be a true sphere of radius $\approx 6370 \mathrm{~km}$.
(ア) Latitude and Longitude

Circles on the Earth

Any circle on the Earth's surface whose centre is at the centre of the Earth is called a

great circle.

Other circles are small circles.
The equator and any circle passing through
the poles are great circles.
Great circles passing through the poles are called meridians.

In the

Longitude: is the angle between the Greenwich meridian, passing through Greenwich (in London), and any other meridian (measured East or West) subtended at the centre of the Earth. diagram, (1) is the GM 0°, (2) is a meridian of longitude $30^{\circ} \mathrm{E}$ and (3) is a meridian of longitude $60^{\circ} \mathrm{W}$.
The maximum possible longitude is 180° (E or W).
Latitude: is the angle between the plane of equator and any small circle on the Earth's surface parallel to the equator (measured North or South) subtended at the centre of the Earth.
In the diagram, (1) is the equator 0°, (2) is a small circle of latitude $30^{\circ} \mathrm{N}$ and (3) is a small circle of latitude $60^{\circ} \mathrm{S}$.
The maximum possible latitude is $90^{\circ}(\mathrm{N}$ or S$)$.

Position of a point: The position of any point on the Earth's surface is given by its latitude and longitude. Latitude and longitude are measured in degrees $\left({ }^{\circ}\right)$ and minutes $\left({ }^{\prime}\right)$ with 1° $=60^{\prime}$.
e.g. Lusaka is on latitude $15^{\circ} \mathrm{S}$ and longitude $28^{\circ} 20^{\prime} \mathrm{E}$. This position is given as $\left(15^{\circ} \mathrm{S}\right.$, $28^{\circ} 20^{\prime}$ E)

Example 1 The diagram shows the points A,

B and C on the Earth.
(a) Describe the position of the points A, B and C in the terms of latitude and longitude.
(b) Find the difference in longitude between A and B .
(c) Find the difference in latitude between B and C .
(a) A is on latitude $16^{\circ} \mathrm{N}$ and longitude $18^{\circ} \mathrm{W}$ i.e. $\left(16^{\circ} \mathrm{N}, 18^{\circ} \mathrm{W}\right)$
B is on latitude $16^{\circ} \mathrm{N}$ and longitude $95^{\circ} \mathrm{W}$ i.e. $\left(16^{\circ} \mathrm{N}, 95^{\circ} \mathrm{W}\right)$
C is on latitude $45^{\circ} \mathrm{S}$ and longitude $95^{\circ} \mathrm{W}$ i.e. $\left(43^{\circ} \mathrm{S}, 95^{\circ} \mathrm{W}\right)$
(b) Since the points A and B are on the same sides of the Greenwich Meridian, the difference in latitude is given by: $95^{\circ}-18^{\circ}=77^{\circ}$
(c) Since the points B and C are on opposite sides of the equator, the difference in longitude is given by: $16^{\circ}+45^{\circ}=61^{\circ}$

(イ) Distance along Circles of Latitude and Longitude

Nautical mile: is a unit of distance on the Earth's surface used by ships and planes. 1 nautical mile (nm) is 1^{\prime} of arc along a great circle (any meridian or the equator). $1 \mathrm{~nm} \approx 1852 \mathrm{~m}=1.852 \mathrm{~km}$
$1^{\circ}=60^{\prime} \rightarrow 360^{\circ}=360 \times 60^{\prime}=21600^{\prime}$
\therefore The circumference of the Earth $=21600 \mathrm{~nm}$

Distance along a circle of longitude

In the diagram, two points A and B lie on the same longitude. z represents the difference in latitude.
$\operatorname{arc} \mathrm{AB}$: circumference of circle $=z^{\circ}: 360^{\circ}$
$\operatorname{arc} \mathrm{AB} \times 360^{\circ}=2 \pi R \times z^{\circ}$
Distance along a circle of longitude $=\frac{z^{\circ}}{360^{\circ}} \times 2 \pi \mathrm{R}$

Example 2 Given that the radius of the Earth is 6370 km , calculate the distance between $\mathrm{A}\left(40^{\circ} \mathrm{N}, 50^{\circ} \mathrm{W}\right)$ and $\mathrm{B}\left(24^{\circ} 30^{\prime} \mathrm{S}, 50^{\circ} \mathrm{W}\right)$ in: (a) nautical miles (b) kilometres

(Take π to be 3.142)

(a) The two points lie on the same meridian.

The difference in latitude $=40^{\circ}+24^{\circ} 30^{\prime}=64^{\circ} 30^{\prime}=64 \times 60^{\prime}+30^{\prime}=3870^{\prime}$
\therefore The distance $=3870 \mathrm{~nm}$
(b) The difference in latitude $=64^{\circ} 30^{\prime}=64.5^{\circ}$

The distance $=\frac{64.5^{\circ}}{360^{\circ}} \times 2 \pi \mathrm{R}=\frac{64.5^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 6370=7172 \mathrm{~km}$

Distance along a circle of latitude

In the diagram, A and B lie on the equator, and C and D lie on the circle of latitude $x^{\circ} \mathrm{N}$. $\angle \mathrm{AOC}=\angle \mathrm{OCP}=x^{\circ}$ because of alternate angles.
In the right-angled triangle $\mathrm{OCP}, \cos x^{\circ}=\frac{\mathrm{CP}}{\mathrm{OC}}=\frac{r}{\mathrm{R}}$
Therefore The radius of a circle of latitude $r=\mathrm{R} \cos x^{\circ}$
$\angle \mathrm{AOB}=\angle \mathrm{CPD}=y^{\circ}$ as these are angles between the same meridians.
$\operatorname{arc} \mathrm{CD}$: circumference of circle of latitude $x^{\circ} \mathrm{N}=\angle \mathrm{CPD}: 360^{\circ}$
$\operatorname{arc} \mathrm{CD} \times 360^{\circ}=2 \pi r \times y^{\circ}$
$\operatorname{arc} \mathrm{CD}=\frac{y^{\circ}}{360^{\circ}} \times 2 \pi r \quad$ Now $r=\mathrm{Rcos} x^{\circ}$.
\square

\therefore Distance along a circle of latitude $=\frac{y^{\circ}}{360^{\circ}} \times 2 \pi \mathrm{R} \cos x^{\circ}$
Example 3 Point A is on latitude $60^{\circ} \mathrm{N}$, longitude $20^{\circ} \mathrm{E}$ and point B is on latitude $60^{\circ} \mathrm{N}$, longitude $110^{\circ} \mathrm{E}$. Given that the radius of the Earth is 6370 km , find the distance along the circle of latitude between A and B in:
(a) nautical miles (b) kilometres (Take π to be 3.142)
(a) The difference in longitude $=110^{\circ}-20^{\circ}=90^{\circ}$

The distance $\mathrm{AB}=90 \times 60 \times \cos 60^{\circ}=2700 \mathrm{~nm}$
(b)

The distance $\mathrm{AB}=\frac{90^{\circ}}{360^{\circ}} \times 2 \pi \mathrm{R} \cos 60^{\circ}=\frac{1}{4} \times 2 \times 3.142 \times 6370 \times \frac{1}{2}=5004 \mathrm{~km}$

Example 4 The diagram shows that A and B both lie in latitude $55^{\circ} \mathrm{N}$, meridian NAS is $125^{\circ} \mathrm{W}$ and meridian NBS is directly opposite NAS.
(a) Write down the positions, using latitude and longitude, of the points: (i) A (ii) B
(b) Calculate the shortest distance AB in nautical miles

(a) (i) A lies on latitude $55^{\circ} \mathrm{N}$ and longitude $125^{\circ} \mathrm{W}$, i.e. $\left(55^{\circ} \mathrm{N}, 125^{\circ} \mathrm{W}\right)$
(ii) Meridian NBS is $180^{\circ}-125^{\circ}=55^{\circ} \mathrm{E}$ longitude.

B lies on latitude $55^{\circ} \mathrm{N}$ and longitude $125^{\circ} \mathrm{W}$, i.e. $\left(55^{\circ} \mathrm{N}, 55^{\circ} \mathrm{E}\right)$
(b) Two paths as distance AB can be considered:
(i) via the North pole (along a great circle)
(ii) along the circle of latitude $55^{\circ} \mathrm{N}$
(i) In the diagram on the right,
$\angle \mathrm{AOB}=180^{\circ}-2 \times 55^{\circ}=70^{\circ}$
The distance ANB $=70 \times 60=4200 \mathrm{~nm}$

(ii) The difference in longitude $=180^{\circ}$

The distance AB along the circle of latitude $=180 \times 60 \times \cos 55^{\circ}=6195 \mathrm{~nm}$ A comparison of the two distances shows that the distance via the North pole is shorter than the distance along the arc of the latitude.
In general,
the shortest distance between two points on the Earth's surface is the length of the arc along the great circle passing through them.

Speed in nautical miles per hour: A speed of 1 nautical mile per hour is 1 knot. This is the unit commonly used by ships and planes. ($1 \mathrm{knot} \approx 1.852 \mathrm{~km} / \mathrm{h}$)

Example 5 A plane flies due south from town $\mathrm{A}\left(37.5^{\circ} \mathrm{N}, 15^{\circ} \mathrm{E}\right)$ to town $\mathrm{B}\left(15^{\circ} \mathrm{S}, 15^{\circ} \mathrm{E}\right)$ in 9hours. Find the speed of the plane in knot.

The difference in latitude $=37.5^{\circ}+15=52.5^{\circ}$
The distance $\mathrm{AB}=52.5 \times 60=3150 \mathrm{~nm}$
\therefore The speed $=\frac{\text { distance }}{\text { time }}=\frac{3150 \mathrm{~nm}}{9 \mathrm{~h}}=350$ knots

(ウ)Time

The Earth rotates making a complete rotation $\left(360^{\circ}\right)$ in 24 hours.
Therefore it rotates $\frac{360^{\circ}}{24}=15^{\circ}$ in one hour.
The world is divided into time zones which are determined from the universal time line at the Greenwich meridian. The universal time is called Greenwich Mean Time (GMT).

For every 15° moved to east of the Greenwich meridian one hour is gained against GMT and for every 15° west of the Greenwich meridian one hour is lost against GMT.

Example 6 Alexandria is on longitude $30^{\circ} \mathrm{E}$. What is the local time in Alexandria if it is 05:00 hours GMT?

Local time is $\frac{30^{\circ}}{15}=2$ hours ahead of GMT.
Therefore local time in Alexandria is $05: 00+2$ hours $=07: 00$ hours.

Exercise 20

1 The diagram is an extract from an Atlas of the World map.
(a) Write down the position (in Latitude and Longitude) of the town: (i) New Orleans
(ii) Cairo
(iii) Durban
(b) Taking π to be 3.142 and $\mathrm{R}=$ 6370 km , calculate the distance in kilometres from:

(i) Cairo to Durban (ii) New

Orleans to Sankt-Peterburg
(c) When the time in Sankt-Peterburg is 14:00 hours, calculate the time in (i) Durban (ii) New Orleans

2 The diagram shows positions of four towns A, B, C and D on the Earth's surface. Two jets X and Y are to fly from town A to D . X flies along the circle of latitude $45^{\circ} \mathrm{N}$ to B and then due south to D , while Y flies due south to C and then along the circle of latitude $20^{\circ} \mathrm{N}$ to D .
(a) Calculate the total distance travelled by each jet in kilometres.

(b) Given that jet X has a speed of 400 knots and assuming that it flies at this speed from A to D, calculate its flight time, giving your answer to the nearest hour.
(c) If is also given that jet Y takes the same time to fly to town D as jet X , calculate the speed of jet Y in knots, giving your answer to the nearest ten.

29 Probability

The probability of an event happening is a measure of how likely that event happens. Probability is measured on a scale from 0 to 1 . A value of 0 means it is impossible, while 1 means it is certain. The probability of an event A is usually denoted by $\mathrm{P}(\mathrm{A})$. In general, $\mathrm{P}(\mathrm{A})+\mathrm{P}(\operatorname{not} \mathrm{A})=1 . \therefore(\operatorname{not} \mathrm{A})=1-\mathrm{P}(\mathrm{A})$

(ア) Theoretical Probability

Theoretical probability is the probability of an outcome occurring in theory. This probability is based on equally likely outcomes (e.g. coins, dice, cards, etc.). Theoretical probability is expressed as:

$$
P(A)=\frac{\text { number of favourable outcomes }}{\text { total number of possible outcomes }}
$$

$$
\begin{array}{lll}
\text { e.g. } & \text { If } & \text { a }
\end{array} \quad \text { coin } \quad \text { is }
$$

$$
\text { The probability of heads }=\mathrm{P}(\text { Heads })=\frac{1}{2}, \mathrm{P}(\text { Tails })=\frac{1}{2}
$$

Example 1 A box contains 3 red balls, 2 blue balls and 1 white ball. If a ball is picked at random from the box, what is the probability that it is:
(a) red (b) blue (c) white (d) black (e) not blue
(a) Total number of balls is $3+2+1=6 . \mathrm{P}($ red $)=\frac{3}{6}=\frac{1}{2}$
(b) $\mathrm{P}($ blue $)=\frac{2}{6}=\frac{1}{3}$
(c) $\mathrm{P}($ white $)=\frac{1}{6}$
(d) $\mathrm{P}($ black $)=\frac{0}{6}=0$
(e) $\mathrm{P}($ not blue $)=1-\mathrm{P}($ blue $)=1-\frac{1}{3}=\frac{2}{3}$

(イ) Combined Events

A combined (compound) event involves two or more events
Mutually exclusive events: are sets of events which cannot occur at the same time.
e.g. The outcomes of tossing a coin
\because Either heads or tails turns up. They cannot occur at the same time.
In general, if A and B are mutually exclusive events,

$$
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

This rule is called the addition rule and can be applied to any number of events if they are mutually exclusive.

Example 2 A box contains 3 red balls, 2 blue balls and 1 white ball. If a ball is picked at random from the box, what is the probability that it is red or white?

Total number of balls is 6,3 of these are red and 1 are white.

$$
\begin{aligned}
& \mathrm{P}(\text { red })=\frac{3}{6}, \mathrm{P}(\text { white })=\frac{1}{6} \\
& \therefore \mathrm{P}(\text { red or white })=\frac{3}{6}+\frac{1}{6}=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

Independent events: are events which have no effect on each other. e.g. When two dice are rolled, their outcomes are independent.

In general, if A and B are independent events,

$$
\mathrm{P}(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \times \mathrm{P}(\mathrm{~B})
$$

This rule is called the multiplication rule and can be applied to any number of events if they are independent.

Example 3 A bag contains 2 red beads and 3 white beads. A bead is picked at random from the bag and replaced in the bag. Then a second bead is picked from the same bag. What is the probability that both beads were red?

The two events are independent.

$$
\begin{aligned}
& \mathrm{P}(\text { red on } 1 \text { st picking })=\frac{2}{5}, \mathrm{P}(\text { red on } 2 \text { nd picking })=\frac{2}{5} \\
& \therefore \mathrm{P}(\text { both red })=\frac{2}{5} \times \frac{2}{5}=\frac{4}{25}
\end{aligned}
$$

Dependent events: Two events are dependent if the first event affects the second event. e.g. If a bead is picked at random from a bag of red and white beads, and it is not replaced in the bag, the colour of the second picked bead is dependent on the first event. The multiplication rule can also be used to find the probability of a combination of dependent events.

Example 4 A bag contains 2 red beads and 3 white beads. A bead is picked at random from the bag and is not replaced in the bag. Then a second bead is picked from the same bag. What is the probability that both beads were red?

If the first bead is not replaced, then there are 4 beads remaining in the bag. And if the first bead was red, then there are only 1 red bead left in the bag.
So $\mathrm{P}($ red on 1 st picking $)=\frac{2}{5}, \quad \mathrm{P}($ red on 2 nd picking $)=\frac{1}{4}$
$\therefore \mathrm{P}($ both red without replacing $)=\frac{2}{5} \times \frac{1}{4}=\frac{1}{10}$
Tree diagrams: are diagrams on which the possible outcomes of events are written at the ends of the 'branches'.
e.g. (a) A bag contains 2 red beads and 3 white beads. A bead is picked at random from the bag and replaced in the bag. Then a second bead is picked from the same bag.
(b) A bag contains 2 red beads and 3 white beads. A bead is picked at random from the bag and is not replaced in the bag. Then a second bead is picked from the same bag.
The information above can be shown below.

Example 5 A box contains 3 blue marbles, 4 red marbles and 5 green marbles. A marble is taken and is not replaced, and then a second marble is taken.
(a) Draw a tree diagram to show all the possible outcomes.
(b) Find the probability of taking: (i) two green marbles
(ii) one blue marble and one red marble (iii) two marbles of the same colour
(iv) two marbles of different colours (v) no red marble
(a) The tree diagram is shown below.

(b) (i) $\mathrm{P}(\mathrm{GG})=\frac{5}{12} \times \frac{4}{11}=\frac{5}{33}$

There are 3 branches for the first taking of a marble and these are marked on the branches. At the end of each of the first branches, there are 3 further branches for the second taking of a marble. The probabilities for these branches are different from the first 3 branches because the first marble is not replaced.
(ii) $\mathrm{P}(\mathrm{B}$ and R$)=\mathrm{P}(\mathrm{BR})+\mathrm{P}(\mathrm{RB})=\frac{3}{12} \times \frac{4}{11}+\frac{4}{12} \times \frac{3}{11}=\frac{1}{11}+\frac{1}{11}=\frac{2}{11}$
(iii) $\mathrm{P}($ two marbles of the same colour $)=\mathrm{P}(\mathrm{BB})+\mathrm{P}(\mathrm{RR})+\mathrm{P}(\mathrm{GG})$

$$
=\frac{3}{12} \times \frac{2}{11}+\frac{4}{12} \times \frac{3}{11}+\frac{5}{12} \times \frac{4}{11}=\frac{6+12+20}{132}=\frac{38}{132}=\frac{19}{66}
$$

(iv) P (two marbles of different colours) $=1-\mathrm{P}$ (two marbles of the same colour)

$$
=1-\frac{19}{66}=\frac{47}{66}
$$

(v) $P($ no $R)=P(1$ st not red, 2nd not red $)$

$$
=\left(1-\frac{4}{12}\right) \times\left(1-\frac{4}{11}\right)=\frac{8}{12} \times \frac{7}{11}=\frac{14}{33}
$$

OR If no R is taken, outcomes are $\mathrm{BB}, \mathrm{BG}, \mathrm{GB}$ and GG

$$
\mathrm{P}(\mathrm{no} \mathrm{R})=\mathrm{P}(\mathrm{BB})+\mathrm{P}(\mathrm{BG})+\mathrm{P}(\mathrm{~GB})+\mathrm{P}(\mathrm{GG})
$$

$$
=\frac{3}{12} \times \frac{2}{11}+\frac{3}{12} \times \frac{5}{11}+\frac{5}{12} \times \frac{3}{11}+\frac{5}{12} \times \frac{4}{11}
$$

$$
=\frac{6+15+15+20}{132}=\frac{56}{132}=\frac{14}{33}
$$

Exercise 21

1 If a six-sided die is rolled, find the probability that:
(a) 1 turns up
(b) an odd number turns up
(c) a prime number turns up

2 Two fair coins are tossed. Find the probability of getting a heads and a tails.
3 A bag contains 1 red, 2 yellow and 3 blue beads. A bead is selected and replaced in the bag. Then a second bead is selected What is the probability of getting:
(a) two yellow beads (b) one red bead and one blue bead (c) no red bead
(d) two beads of the same colour (e) two beads of different colours

4 Bag X contains 2 white and 3 black marbles. Bag Y contains 3 white and 2 black marbles. A marble is chosen at random from Bag X and placed in Bag Y without seeing its colour. A marble is now picked from Bag Y. What is the probability that it is white?
5 A box contains 2 white, 5 black and 3 red balls. Two balls are drawn from the bag in succession without replacement.
(a) Draw a tree diagram to show all the possible outcomes.
(b) Find the possibility of getting:
(i) two red balls
(ii) one white and one black ball
(iii) one black and one red ball (iv) no black ball
(v) two balls of the same colour (vi) two balls of different colours

30 Statistics

Statistics deals with the collecting, recording, interpreting, illustrating and analysing of data. Statistics are used to make decisions and predict what may happen in the future.

(ア) Presentation

Data can be presented visually in different ways, depending on the nature of the data and what you would like to show.

Pie charts: are circular diagrams in which the angles of sectors represent the frequency (the angles are proportional to the frequency).

Example 1. The pie chart represents 60 pupils.
(a) What angle represents 1 person?
(b) How many people are represented by sector B?
(c) If sector C represents 9 people, find its angle.
(d) How many people does sector D represent?
(a) 360° represents 60 people.

$\frac{360^{\circ}}{60}=6^{\circ}$ represents 1 person.
(b) $\frac{108^{\circ}}{6^{\circ}}=18$ people
(c) $9 \times 6^{\circ}=54^{\circ}$
(d) Angle of sector $\mathrm{D}=360^{\circ}-60^{\circ}-108^{\circ}-54^{\circ}=138^{\circ} \quad \therefore \frac{138^{\circ}}{6^{\circ}}=23$ people.
or sector A represents $=60^{\circ} \div 6^{\circ}=10$ people. So $60-10-18-9=23$ people
Bar graphs: are diagrams in which the vertical or horizontal bars of equal width represent the frequency (the lengths are proportional to the frequency).

 lines.

(イ) Measures

Measures of averages (central tendency): There are three kinds of average in statistics

- mean, mode and median.

Mean: is the arithmetically calculated average which is found by adding up all the
values and dividing by the number of values.
Mean $=\frac{\text { Sum of all the values }}{\text { Number of values }}$
Mode: is the value with the highest frequency.
Median: is the middle value of an ordered set of data. In general,
position of median $=\frac{n+1}{2}$ where n is the number of values. For an odd number
of values, the median is the value in the middle. For an even number of values, the median is the mean of the two middle values.
Example 2 Find (i) the mean, (ii) mode and (iii) median of the numbers:
(a) $2,3,5,6,6,9,10$ (b) $5,2,1,3,6,5,5,2,3,4$
(a) (i) Mean $=\frac{2+3+5+6+6+9+10}{7}=5.85=5.9$ (to 2 sf)
(ii) Mode is 6 (iii) Median is 6
(b) Arrange the numbers in ascending order: 1, 2, 2, 3, 3, 4, 5, 5, 5, 6
(i) Mean $=\frac{1+2+2+3+3+4+5+5+5+6}{10}=3.6$
(ii) Mode is 5 (iii) Median $=\frac{3+4}{2}=3.5$

Measures of spread (dispersion): gives how much the data is grouped around the average or spread out. There are several ways of measuring spread.
Range: is the difference between the highest and lowest values.
ange $=$ highest value - lowest value
Quartiles: divide the values into four equal parts (this means there are three quartiles).
The second quartile $\left(\mathrm{Q}_{2}\right)$ is the median and the other two quartiles are called the lower
$\left(\mathrm{Q}_{1}\right)$ and upper quartile $\left(\mathrm{Q}_{3}\right)$. In general, if n is the numbers of values,
position of lower quartile $\left(\mathrm{Q}_{1}\right)=\frac{n+1}{4}$, position of upper quartile $\left(\mathrm{Q}_{3}\right)=\frac{3(n+1)}{4}$
Interquartile range: is the difference between the upper and lower quartiles.
nterquartile range $=$ upper quartile - lower quartile

Example 3 Find the range, the lower quartile, the median, the upper quartile and the interquartile range of the numbers $25,31,30,24,28,33,35,31,27,23,33$.

Arrange the 11 numbers. 2324252728303131333335

$$
\begin{array}{lll}
\mathrm{Q}_{1} & \mathrm{Q}_{2} & \mathrm{Q}_{3}
\end{array}
$$

(position of $\mathrm{Q}_{1}=\frac{11+1}{4}=3$, position of $\mathrm{Q}_{2}=\frac{11+1}{2}=6$, position of $\mathrm{Q}_{3}=\frac{3(1)}{}$, \therefore the range $=$ highest value - lowest value $=35-23=12$
the lower quartile $=25$
the median $=30$
the upper quartile $=33$
the interquartile range $=$ upper quartile - lower quartile $=33-25=8$
Percentiles: divide the values into 100 equal parts. Percentiles are used for large amounts of data. In genera, if n is the numbers of values,
position of m th percentile $\left(\mathrm{P}_{\ldots}\right)=\frac{m(n+1)}{100} \quad$ e.g. the 90 th percentile

$$
\mathrm{P}_{90}=\frac{90(n+1)}{100}
$$

It can be said that the lower quartile is the 25 th percentile, the median is the 50 th percentile and the upper quartile is the 75th percentile.

(ウ) Frequency Distributions

A frequency distribution is used for large amounts of data.
Frequency tables: show the frequency each value occurs.
Example 4 The data below shows the marks obtained by 40 pupils in a mathematics test. Make a frequency table and find (a) the mean, (b) mode and (c) median of the data.

[^1]Count the frequencies and then present these marks in a frequency table.

Marks (x)	1	2	3	4	5	6	7	8	9	10
Frequency (f)	2	2	3	5	7	7	8	3	2	1

(a) The mean can also be found by using a frequency table.

Redraw the table with another row for the product ($f x$) and another column at the end for total. Calculate $f x$ and the total of f and $f x$.

Marks (x)	1	2	3	4	5	6	7	8	9	10	Total
Frequency (f)	2	2	3	5	7	7	8	3	2	1	40
Product $(f x)$	2	4	9	20	35	42	56	24	18	10	220

The mean of a frequency distribution is given by the following formula:
Mean of a frequency distribution $=\frac{\text { Sum of } f x}{\operatorname{total} f}$
\therefore Mean $=\frac{220}{40}=5.5$
(b) The mode can be found easily. Find the marks with highest frequency. So 7 is the mode.
(c) position of median $=\frac{40+1}{2}=20.5$

The 20th number and 21st number both are 6 . So the median is 6 .
Grouped data: is data put into groups to make it easier to handle when there is a large number of data or the data is widely spread. The groups are called classes and the width of a class is called a class interval. In any collection of grouped data, the class intervals are usually all the same but do not have to be.

Example 5 The table below shows the heights of 50 pupils in ascending order. Construct a frequency table using a class interval of 5 , beginning with $151-155$.

154	155	156	157	157	158	158	159	159	159
159	160	160	160	161	161	162	162	163	163
164	164	165	165	165	165	165	166	166	167
167	167	168	168	168	169	170	170	170	171
171	172	172	172	173	173	174	174	175	176

The heights can be grouped into classes having a class interval of 5 as follows.

Heights	$151-155$	$156-160$	$161-165$	$166-170$	$171-175$	$176-180$
Frequency	2	12	13	12	10	1

Mean of grouped data: can be found by using the class centre as the representative for each class. (The class centre is the mid-point of the class interval)
Example 6 Calculate the mean of the grouped data of Example 5.
Redraw the table with two more row for the class centre (x) and the product $(f x)$, and another column at the end for total.

Heights	$151-155$	$156-160$	$161-165$	$166-170$	$171-175$	$176-180$	Total
Class centre (x)	153	158	163	168	173	178	
Frequency (f)	2	12	13	12	10	1	50
Product $(f x)$	306	1896	2119	2016	1730	178	8245

$$
\therefore \text { Mean }=\frac{\text { Sum of } f x}{\operatorname{total} f}=\frac{8245}{50}=164.9
$$

Histograms: are like vertical bar graphs of grouped data in which each frequency is represented by a rectangle, there are no spaces between the bars, the widths of rectangles are proportional to the class interval and the areas of rectangles are proportional to the frequency
e.g. The diagram on the right shows the histogram for the data of Example 5.

Frequency polygons: are diagrams obtained by joining the mid-points of the tops of the bars on a histogram.
e.g. The diagram below shows the frequency polygon of Example 5 .

frequency polygon with histogram

frequency polygon without histogram

(エ) Cumulative Frequency

A cumulative frequency is the frequencies added to produce a running total. A cumulative frequency is used to make estimates.
Cumulative frequency curves: are diagrams obtained by joining the cumulative frequencies against the upper class boundaries with a smooth curve. (The class boundary is the border between two class intervals. The upper class boundary divides a class interval from the one above it.)
Example 7 Draw a cumulative frequency curve for the data of Example 5.
Redraw the table with two more row for the upper class boundary and the cumulative frequency.

Heights	$151-155$	$156-160$	$161-165$	$166-170$	$171-175$	$176-180$
Upper class boundary	155.5	160.5	165.5	170.5	175.5	180.5
Frequency	2	12	13	12	10	1
Cumulative frequency	2	$2+12$ $=14$	$14+13$ $=27$	$27+12$ $=39$	$39+10$ $=49$	$49+1$ $=50$

(This table is called a cumulative frequency table.)
Plot the cumulative frequencies against the upper class boundaries and join them with a smooth curve.

A cumulative frequency can be used to find out further information about the data such as 'How many pupils scored more than 75% ?' or 'How many pupils scored less than 25\%?'

Example 8 The table below shows a test marks of 300 pupils.

Marks	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$
Frequency	6	14	49	70	65

Marks	$51-60$	$61-70$	$71-80$	$81-90$	$91-100$
Frequency	44	29	13	7	3

(a) Draw a cumulative frequency curve.
(b) Use your graph to estimate: (i) the median (ii) the interquartile range
(c) Pupils scoring 75 marks or more were awarded distinctions. Estimate the number of pupils who had distinctions.
(d) If a pupil is chosen, what is the probability that his marks will be greater than 65 marks?
(a) Construct the cumulative frequency table.

Marks	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$
Frequency	6	14	49	70	65
Cumulative frequency	6	20	69	139	204

Marks	$51-60$	$61-70$	$71-80$	$81-90$	$91-100$

Frequency	44	29	13	7	3
Cumulative frequency	248	277	290	297	300

Plot the cumulative frequencies and join them with a smooth curve.

(b) Median $=50$ th percentile

Upper quartile $=75$ th percentile Lower quartile $=25$ th percentile
From the graph,
(i) the median $=42$
(ii) the interquartile range $=$ upper quartile - lower quartile $=55-31=24$
(c) The frequency at 75 marks is 285 . So 284 pupils were not awarded.

The number of pupils who had distinctions $=300-284=16$
(d) The frequency at 65 marks is 263 . So 37 pupils' marks are greater than 65 marks.

So the probability $=\frac{37}{300}$

Exercise 22

1 The pie chart shows how a pupil spends a day.
(a) What fraction of time is spent for school?
(b) How long is the time for sleeping?
(c) If the time for homework is 2hours, what is the angle of sector 'homework'?
(d) What percentage of time is spent for eating, giving your answer correct to 1 dp ?

2 Find (a) the mean, (b) mode and (c) median of the numbers:

$$
6,5,4,6,7,3,4,8,2,6
$$

3 The table below shows the marks obtained by a class in a mathematics test.

Marks	$0-9$	$10-19$	$20-29$	$30-39$
Frequency	2	7	23	15

Marks	$40-49$	$50-59$	$60-69$	$70-79$
Frequency	6	3	2	2

(a) Draw a histogram.
(b) Find: (i) the number of pupils who wrote the test (ii) the mean of marks

4100 pupils were asked the time they took to travel to their school in a city. The results are shown in the following table.

Time in $\min (x)$	$10<x \leq 20$	$20<x \leq 30$	$30<x \leq 40$	$40<x \leq 50$
Number of pupils	8	17	23	20

Time in $\min (x)$	$50<x \leq 60$	$60<x \leq 70$	$70<x \leq 80$
Number of pupils	15	11	6

(a) Calculate an estimate of the mean of time taken to travel.
(b) Copy and complete the cumulative frequency table for the time taken to travel.

Time in $\min (x)$	≤ 20	≤ 30	≤ 40	≤ 50	≤ 60	≤ 70	≤ 80

(c) Draw a cumulative frequency curve to illustrate this information.
(d) Use your graph to find: (i) the median of time taken (ii) the interquartile range
(e) If a pupils are chosen at random, find the probability that he will take less than or equal to 35 minutes.

31 Sequences

A sequence is a list of numbers which follow a mathematical rule. Each number in a sequence is called a term of the sequence. If the rule is not given, it can be worked out from the first few terms.

Example 1 Write down the next two terms in each of the following sequences.
(a) $3,7,11,15, \ldots$ (b) $2,4,8,16, \ldots$
(a) Each term is obtained by adding 4 to the previous term.
\therefore The next two terms are: $15+4=19$ and $19+4=23$
(b) Each term is obtained by multiplying the previous term by 2 .
\therefore The next two terms are: $16 \times 2=32$ and $32 \times 2=64$
The nth term of a sequence: can be expressed as a function of n. The nth term is
denoted by a_{n}. In general,
-if each next term is obtained by adding a constant to the previous term,

$$
a_{n}=a+(n-1) d
$$

where $a=$ the first term, $n=$ the number of terms, $d=$ the common difference -if each next term is obtained by multiplying the previous term by a constant,

$$
a_{n}=a r^{n-1}
$$

where $a=$ the first term, $n=$ the number of terms and $d=$ the common ratio
Example 2 Find the formula for the nth term of following sequences.
(a) $2,5,8,11, \ldots$
(b) $3,6,12,24,$.
(c) $1,4,9,16, \ldots$
(a) Each term is obtained by adding 3 to the previous term.

$$
\text { So } a=2 \text { and } d=3 . \therefore a_{n}=2+(n-1) \times 3=3 n-1
$$

(b) Each term is obtained by multiplying the previous term by 2 .

$$
\text { So } a=3 \text { and } r=2 . \therefore a_{n}=3 \times 2^{n-1}
$$

(c) Each term is obtained by squaring the number of its position.

$$
1 \text { st term }=1^{2}=1,2 \text { nd term }=2^{2}=4,3 \text { rd term }=3^{2}=9, \ldots \therefore a_{n}=n^{2}
$$

Applications of sequences

Example 3. Match sticks joined end to end were used to construct squares as shown below. The table shows the relationship between the number of squares (n) and the number of match sticks (m) used.

(a) Find the value of x and y in the table
(b) Write down the formula of m in terms of n.
(c) Find the number of squares (n) that will be constructed with 151 match sticks (m).
(a) Each term is obtained by adding 3 to the previous term.

Therefore $x=10+3=13$ and $y=13+3=16$
(b) The first term (a) is 4 and the common difference (d) is 3 .
$\therefore m=4+(n-1) \times 3=3 n+1$
(c) Substitute 151 for m and find the value of n.

$$
151=3 n+1 \quad 3 n=150 \quad \therefore n=50
$$

Exercise 23

1 Find the next two terms: (a) $2,5,8,11, \ldots$ (b) $8,6,4,2, \ldots$ (c) $1,10,100, \ldots$
(d) $16,-8,4,-2, \ldots$
(e) $1,2,4,7,11$,
(f) $4,9,16,25, \ldots$

2 Find the nth term: (a) $1,3,5,7, \ldots$ (b) $10,6,2,-2, \ldots$ (c) $2,6,18,54, \ldots$
(d) $0,1,4,9,16$,
(e) $1,8,27,64, \ldots$

3 Consider the following pattern.

(a) How many dots are in the 4th rectangle space?
(b) Write down the formula for the number of dots in the nth rectangle.
(c) A given rectangle has 44 dots, what is its position in this pattern?
(d) How many dots are in the 25 th rectangle?

Answers

Exercise 1

1 (a) 3 (b) 3 (c) 1 (d) 2 (e) 4 (f) 3
2 (a) $7-2+12=17$ (b) $12-6=6$ (c) $-35-8=-43$
3 (a) $2+1-4+\frac{6+4-1}{8}=-1+\frac{9}{8}=\frac{1}{8}$
(b) $2-4+3+\frac{15-5+12}{30}=1+\frac{22}{30}=1 \frac{11}{15}$
(c) $\frac{4}{3} \div \frac{7}{6}=\frac{4}{3} \times \frac{2}{7}=\frac{8}{7}=1 \frac{1}{7}$
(d) $\frac{7}{3} \div\left(\frac{5}{2}-\frac{9}{5}\right)-\frac{7}{4}=\frac{7}{3} \div \frac{25-18}{10}-\frac{7}{4}=\frac{1}{3} \times \frac{10}{7}$

$$
=\frac{10}{3}-\frac{7}{4}=\frac{40-21}{12}=\frac{19}{12}\left(=1 \frac{7}{12}\right)
$$

$442=2 \times 3 \times 7,70=2 \times 5 \times 7,105=3 \times 5 \times 7$
$\therefore \mathrm{HCF}=7, \mathrm{LCM}=2 \times 3 \times 5 \times 7=210$
$5 \frac{7}{7+6} \times 455=245$ boys
6 (a) $135 \min : 13.5 \min =10: 1$
(b) $\frac{8}{12}: \frac{15}{12}: \frac{12}{12}=8: 15: 12$

71 cm on the map represents $20000 \mathrm{~cm}=0.2 \mathrm{~km}$.
(a) $1: 0.2=8: x \quad \therefore x=0.2 \times 8=1.6 \mathrm{~km}$
(b) $1: 0.2=x: 6 x=\frac{6}{0.2}=30 \mathrm{~cm}$
(c) $1 \mathrm{~cm}^{2}$ on the map represents $0.2 \times 0.2=0.04 \mathrm{~km}^{2}$.
$1: 0.04=200: x \quad \therefore x=0.04 \times 200=8 \mathrm{~km}^{2}$
(d) $1: 0.04=x: 3 \quad x=\frac{3}{0.04}=75 \mathrm{~cm}^{2}$

Exercise 2

1 Cost $=10 \times 45000=$ K 450000
Income $=9 \times 52000+1 \times 40000=\mathrm{K} 508000$ Profit/Loss $=508000-450000=$ K58 000 (profit)

2 (a(a) Discount $=\frac{5}{100} \times 120000=6000$
$120000-6000=\mathrm{K} 114000$
(b) original price $\times \frac{100-5}{100}=\mathrm{K} 28500$
original price $=28500 \times \frac{100}{95}=\mathrm{K} 30000$
$3 I=\frac{1200000 \times 9.5 \times \frac{8}{12}}{100}=\mathrm{K} 76000$
$\mathrm{A}=1200000+76000=\mathrm{K} 1276000$
4 Amount $=832000=P+\frac{P \times 7 \times 4}{100}$

$$
\therefore P=\frac{832000 \times 100}{128}=\mathrm{K} 650000
$$

$5 R=\frac{I \times 100}{P T}=\frac{120000 \times 100}{250000 \times 6}=8 \%$

Exercise 3

1 (a) $x^{\frac{1}{2}-\frac{1}{3}}=x^{\frac{1}{6}}$ (b) $x^{-2+\frac{1}{2}-\left(-\frac{3}{2}\right)}=x^{0}=1$
2 (a) $\frac{1}{(-5)^{3}}=-\frac{1}{125} \quad$ (b) $\left(\frac{2}{1}\right)^{2}=4$
(c) $5^{6-1-3} \times 1=5^{2}=25$
(d) $4^{2.5-1}=4^{1.5}=4^{\frac{3}{2}}=(\sqrt{4})^{3}=2^{3}=8$ or $\left(2^{2}\right)^{\frac{3}{2}}=2^{2 \times \frac{3}{2}}=2^{3}=8$
(e) $\left(\sqrt[3]{-\frac{8}{27}}\right)^{2}=\left(-\frac{2}{3}\right)^{2}=\frac{4}{9}$
or $\left\{\left(-\frac{2}{3}\right)^{3}\right\}^{\frac{2}{3}}=\left(-\frac{2}{3}\right)^{2}=\frac{4}{9}$
(f) $\frac{1}{25^{\frac{1}{2}}}=\frac{1}{\sqrt{25}}=\frac{1}{5}$
(g) $16^{\frac{3}{4}}=(\sqrt[4]{16})^{3}=2^{3}=8$ or $\left(2^{4}\right)^{\frac{3}{4}}=2^{3}=8$

3 (a) 7.03×10^{2} (b) 8.4052×10^{3} (c) 7.2×10^{-2}
(d) 3.75×10^{-4}

4 (a) 3.0 (b) 2.97 (c) 2.974
5 (a) 40 (b) 41 (c) 41.0 (d) 40.97

Exercise 4

$1 \mathrm{E}=\{1,2,3,4,5,6,7,8,9,10\}, \mathrm{A}=\{2,3,5,7\} \mathrm{B}=$ $\{1,3,5,7,9\}, C=\{3,6,9\}$
(a) $\mathrm{A}^{\prime}=\{1,4,6,8,9\}$ (b) $\mathrm{A} \cap \mathrm{B}=\{3,5,7\}$
(c) $\mathrm{B}^{\prime}=\{2,4,6,8\}, \mathrm{C}^{\prime}=\{1,2,4,5,7,8\}$
$\therefore \mathrm{B}^{\prime} \cap \mathrm{C}^{\prime}=\{2,4,8\}$
(d) $\mathrm{B} \cap \mathrm{C}=\{3,9\} \therefore \mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=\{2,3,5,7,9\}$

2 If A and B don't intersect, $n(A \cup B)$ is

largest and $\mathrm{n}(\mathrm{A} \cap \mathrm{B})$ is smallest. The largest value of $n(A \cup B)$ is $7+5=12$ and the smallest value of $n(A \cap B)$ is 0 .

If $\mathrm{B} \subset \mathrm{A}($ Fig 4.2 $), \mathrm{n}(\mathrm{A} \cup \mathrm{B})$ smallest and $n(A \cap B)$ is largest. The smallest value of $n(A \cup B)$ is 7 and the largest value of $n(A \cap B)$ 5.

3 (

4

Exercise 5

1 (a) $6 x^{2}-2 x y$ (b) $5 x-19 y$ (c) $a^{2}+3 a-10$
(d) $3 x^{2}-2 x y-8 y^{2}$ (e) $4 a^{2}-12 a b+9 b^{2}$
(f) $4 x^{2}-4+\frac{1}{x^{2}}$
(a) $3 x(x-2)$
(b) $3 a(c-2 d)-2 b(c-2 d)=(3 a-2 b)(c-2 d)$
(c) $(x+1)(x+2)(\mathrm{d})(x+3)^{2}(\mathrm{e})(x-7)(x+3)$

p	2
s	3
f	1,2

p	9
s	6
f	3,3

p	-21
s	-4
f	$-7,3$

(f) $2 x^{2}-5 x-3$
$=2 x^{2}-6 x+x-3$
$=2 x(x-3)+1(x-3)$
$=(x-3)(2 x+1)$
(g) $12 x^{2}-5 x y-2 y^{2}$
$=12 x^{2}-8 x y+3 x y-2 y^{2}$
$=4 x(3 x-2 y)+y(3 x-2 y)$

$=(3 x-2 y)(4 x+y)$
(h) $(7+4 x)(7-4 x)(i)(a b+2 c)(a b-2 c)$
(j) $s\left(t^{2}-4\right)+2\left(t^{2}-4\right)=(s+2)(t+2)(t-2)$

3 (a) $\frac{1}{z}$ (b) $\frac{(3 x-2)(x+4)}{(3 x-2)(2 x-3)}=\frac{x+4}{2 x-3}$
(c) $\frac{-(a-2)}{(a+2)(a-2)}=\frac{-1}{a+2}$ (d) $\frac{1+2 \times 2}{2 a}=\frac{5}{2 a}$
(e) $\frac{1 \times(x-y)+1 \times(x+y)}{(x+y)(x-y)}=\frac{2 x}{(x+y)(x-y)}$
(f) $\frac{1}{x-2}-\frac{1}{(2 x-3)(x-2)}=\frac{2 x-3-1}{(2 x-3)(x-2)}$

$$
=\frac{2(x-2)}{(2 x-3)(x-2)}=\frac{2}{2 x-3}
$$

(g) $\frac{2(x-y)}{9} \times \frac{3}{-(x-y)}=-\frac{2}{3}$
(h) $\frac{x+1}{(x-3)(x-4)} \times \frac{2(x-4)}{(x+1)^{2}}=\frac{2}{(x-3)(x+1)}$
(i) $\frac{(x+y)(x+3 y)}{x y} \times \frac{y}{x+y}=\frac{x+3 y}{x}$

Exercise 6

1 (a) $R=\frac{100 I}{P T} \quad$ (b) $r=\sqrt[3]{\frac{4 V}{3 \pi}}$
(c) $(2 p+1) t=q \quad \therefore t=\frac{q}{2 p+1}$
(d) $y^{2}=\frac{x+1}{3 x-2} \quad y^{2}(3 x-2)=x+1$

$$
\left(3 y^{2}-1\right) x=2 y^{2}+1 \quad \therefore x=\frac{2 y^{2}+1}{3 y^{2}-1}
$$

2 (a) $x=\frac{1}{2}$ (b) $x=0$ (c) $x=10$ (d) $x=\frac{2}{3}$
3 (a) $x=3, y=6$ (b) $x=6, y=-2$
(c) $x=\frac{4}{5}, y=-\frac{2}{5} \quad$ (d) $x=-1, y=2$

4 (a) $x(x-3)=0 \quad x=0,3$
(b) $(x+2)(x+3)=0 \quad x=-2,-3$
(c) $(x-3)^{2}=0 \quad x=3$
(d) $(2 x+1)(x-3)=0 \quad x=-\frac{1}{2}, 3$
(e) $x=\frac{1 \pm \sqrt{13}}{6}=\frac{1 \pm 3.606}{6}=0.77,-0.43$
(f)

$$
x=\frac{-1 \pm \sqrt{41}}{4}=\frac{-1 \pm 6.403}{4}=1.35,-1.85
$$

5 (a) $x=(-27)^{\frac{1}{3}}=-3 \quad$ (b) $x=4^{\frac{3}{2}}=2^{3}=8$
(c) $x=\left(\frac{1}{16}\right)^{\frac{1}{4}}=\left(\frac{1}{2}\right)^{4 \times \frac{1}{4}}=\frac{1}{2}$

$$
x=8^{-\frac{1}{3}}=2^{-1}=\frac{1}{2}
$$

(e) $2^{x}=2^{4} \therefore x=4$ (f) $10^{x}=10^{0} \therefore x=0$
(g) $5^{2 x}=5^{-1} \quad 2 x=-1 \quad \therefore x=-\frac{1}{2}$
(h) $2^{-4 x}=2^{3} \quad-4 x=3 \quad \therefore x=-\frac{3}{4}$

6 (a) $f(-3)=\frac{2 \times(-3)-3}{-3}=3$
(b) $5=\frac{2 x-3}{x} \quad 5 x=2 x-3 \quad \therefore x=-1$
(c) $x y=2 x-3 \quad x=\frac{-3}{y-2} \quad \therefore f^{-1}(x)=\frac{-3}{x-2}$
(d) $f^{-1}(-4)=\frac{-3}{-4-2}=\frac{1}{2}$

Exercise 7

1 (a) gradient $=1 y$-intercept $=-2$
(b) $y=2 x+4$ gradient $=2 y$-intercept $=4$
(c) $y=-\frac{2}{3} x+2$ gradient $=-\frac{2}{3} y$-intercept $=2$

2 (a)

x	-3	-2	-1	0	1	2	3
y	18	8	2	0	2	8	18

> (b) y-intercept $=(0,10$
> $-x^{2}+3 x-10=0$
> $(x-5)(x+2)=0$
> $\therefore x$-intercept
> $=(5,0)$ and $(-2,0)$
> $y=-\left(x-\frac{3}{2}\right)^{2}+\frac{49}{4}$
\therefore The turning point

$$
=\left(\frac{3}{2}, \frac{49}{4}\right)
$$

3 (a) $a=4-\frac{6}{5}+5=7.8$
(b)

(c) The tangent passes through the origin. gradient $=\frac{5-0}{n}=\frac{5}{n}$
(d)

Draw three trapeziums in which each height is 1 unit. Area
$=\frac{1}{2}(3+5) \times 1+\frac{1}{2}(5+6.5) \times 1+\frac{1}{2}(6.5+7.8) \times 1$ $=16.9$ unit 2
(e) From the graph, $x=0.7$
(f) $4+6-\frac{6}{x}+x-4 x=0 \quad \therefore 4-\frac{6}{x}+x=4 x-6$

Draw the line $y=4 x-6$. From the graph, $x=0.9,2.6$
4 (a) deceleration $=\frac{20-30}{20}=-0.5 \mathrm{~m} / \mathrm{s}^{2}$
(b) total distance $=$ area of (i) + area of (ii)

+ area of (iii)

(c)
average speed $=\frac{\text { total distance }}{\text { total time }}=\frac{550}{25}=22 \mathrm{~m} / \mathrm{s}$
(d) deceleration $=\frac{0-20}{5}=-4 \mathrm{~m} / \mathrm{s}^{2}$
speed $=20+(-4) \times 2=12 \mathrm{~m} / \mathrm{s}$

Exercise 8

(a) $x>-1$

(b) $x \leq 3$

(c) $x<4$

(d)

$2 x+2<7 \Rightarrow x<5 \quad 7<2 x+1 \Rightarrow 3<x$
$3<x<5 \therefore x=4$
3 (a) smallest $x+$ smallest $y=-2+(-6)=-8$
(b) largest $x-$ smallest $y=3-(-6)=9$
(c) $y=-5$

4 (a)

5 (a) $x=0 \Rightarrow y$-axis, $y=0 \Rightarrow x$-axis

6 (a) (i) $x+y \geq 60$ (ii) $y \geq x$ (iii) $y \leq 2 x$ (iv) $x+2 y \leq 150$
(b)

Exercise 9

$16 \times 12=x \times 8 \quad \therefore x=9$ people
$y=k x^{2} k=\frac{y}{x^{2}}=\frac{8}{2^{2}}=2 \therefore y=2 x^{2}=2 \times 5^{2}=50$
$3 \quad y=\frac{k}{x-2} \quad k=y(x-2)=2 \times(5-2)=6$
$\therefore y=\frac{6}{x-2}=\frac{6}{8-2}=1$
4 (a) $y=k \frac{x^{2}}{z} k=\frac{y z}{x^{2}}=\frac{5 \times 3}{1^{2}}=15 \therefore y=\frac{15 x^{2}}{z}$
(b) $y=\frac{15 \times 2^{2}}{5}=12$
(c) $x^{2}=\frac{y z}{15}=\frac{6 \times 10}{15}=4 \quad \therefore x= \pm 2$

Exercise 10

$13 x+90^{\circ}+114^{\circ}=360^{\circ} \therefore x=52^{\circ}$
2 (a) $\angle \mathrm{ABD}=\angle \mathrm{BDE}=46^{\circ}$
(b) $\angle \mathrm{EBC}=180^{\circ}-\angle \mathrm{BEF}=102^{\circ}$
(c) $\angle \mathrm{BEF}=\triangle \mathrm{DBE}+\triangle \mathrm{BDE}=78^{\circ}$

$$
\left(\mathrm{or}=180^{\circ}-\angle \mathrm{ABE}\right)
$$

$3(10-2) \times 180^{\circ}=1440^{\circ}$
4 Each exterior angle $=180^{\circ}-135^{\circ}=45^{\circ}$

$$
\begin{aligned}
& \frac{360^{\circ}}{n}=45^{\circ} \therefore n=\frac{360^{\circ}}{45^{\circ}}=8 \text { or } \\
& \frac{(n-2) \times 180^{\circ}}{n}=135^{\circ}
\end{aligned}
$$

5 (a) $\angle \mathrm{CED}=\angle \mathrm{EBA}=60^{\circ} \because$ corresponding angles $\angle \mathrm{BED}=180^{\circ}-\angle \mathrm{CED}=180^{\circ}-60^{\circ}=120^{\circ}$
(b) $\angle \mathrm{BAD}=\angle \mathrm{BED}=120^{\circ} \because$ opposite angles $\angle \mathrm{BAC}=120^{\circ}-35^{\circ}=85^{\circ}$
(c) $\angle \mathrm{ADF}=\angle \mathrm{ABE}=60^{\circ} \because$ opposite angles $\angle \mathrm{CFD}=\angle \mathrm{FAD}+\angle \mathrm{ADF}=35^{\circ}+60^{\circ}=95^{\circ}$

6 each interior angle $=\frac{(6-2) \times 180^{\circ}}{6}=120^{\circ}$

$$
\angle \mathrm{FAB}=\frac{180^{\circ}-120^{\circ}}{2}=30^{\circ}
$$

$\therefore \mathrm{BAE}=120^{\circ}-30^{\circ}=90^{\circ}$
$7 x=\sqrt{6^{2}-3^{2}}=\sqrt{27} \approx 5.20 \mathrm{~cm}$

$$
y=\sqrt{x^{2}-2^{2}}=\sqrt{27-4}=\sqrt{23} \approx 4.80 \mathrm{~cm}
$$

9
$10 \mathrm{AB}=\sqrt{(10-4)^{2}+(14-6)^{2}}=\sqrt{100}=10$ units

11 (a)

(b)

The bearing of B from A $=360^{\circ}-200^{\circ}=160^{\circ}$
(c)

$$
=180^{\circ}+160^{\circ}=340^{\circ}
$$

(d)

Exercise 11

1 (a) $x=\frac{1}{2} \times 70^{\circ}=35^{\circ}$

$$
y=\frac{1}{2} \times\left(360^{\circ}-70^{\circ}\right)=145^{\circ}
$$

(b) $x=35^{\circ}+40^{\circ}=75^{\circ}$
(c) $x=180^{\circ}-100^{\circ}=80^{\circ} y=80^{\circ}+30^{\circ}=110^{\circ}$
(d) $x=2 \times 47^{\circ}=94^{\circ} \quad y=\frac{180^{\circ}-94^{\circ}}{2}=43^{\circ}$
(e) $x=180^{\circ}-2 \times 70^{\circ}=40^{\circ}$
(f) $x=180^{\circ}-40^{\circ}=140^{\circ}$

2 (a) $\angle \mathrm{BDT}=\frac{180^{\circ}-50^{\circ}}{2}=65^{\circ}$
$\therefore \mathrm{BDC}=65^{\circ}-41^{\circ}=24^{\circ}$
(b) $\angle \mathrm{CEB}=\angle \mathrm{CDT}+\triangle \mathrm{DTE}=41^{\circ}+50^{\circ}=91^{\circ}$
(c) $\triangle \mathrm{BAD}=\angle \mathrm{BCE}=65^{\circ}$
(d) $\angle \mathrm{DBC}=\angle \mathrm{CDT}=41^{\circ}$

3 (a) $\triangle \mathrm{REC}=\angle \mathrm{EAC}=54^{\circ}$
(b) $\angle \mathrm{BEC}=180^{\circ}-90^{\circ}-54^{\circ}=36^{\circ}$
(c) $\angle \mathrm{SEA}=\angle \mathrm{EBA}=180^{\circ}-68^{\circ}-54^{\circ}=58^{\circ}$
(d) $\angle \mathrm{CDE}=180^{\circ}-54^{\circ}=126^{\circ}$

$$
\therefore \angle \mathrm{CED}=\frac{180^{\circ}-126^{\circ}}{2}=27^{\circ}
$$

Exercise 12

	A	D	E	F	H	M	S	T	Y
No. of lines	1	1	1	0	2	1	0	1	1
Order	1	1	1	1	2	1	2	1	1

3	(a)	(b)	(c)	(d)	(e)	(f)	(g)
No. of lines	6	8	0	1	2	1	∞
Order	6	8	2	1	2	1	∞

4 (a) (i) 4 (ii) 0 (b) (i) 4 (ii) 4

Exercise 13

$1 \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \quad \frac{3}{6}=\frac{x}{5} \quad \therefore x=2.5 \mathrm{~cm}$
$2 \mathrm{AD}=\sqrt{\frac{4}{9}} \mathrm{AB}=\frac{2}{3} \mathrm{AB}=4 \mathrm{~cm}$
3 (a) $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DBA}$.

$$
\frac{\mathrm{DB}}{\mathrm{AB}}=\frac{\mathrm{DA}}{\mathrm{AC}} \quad \frac{5}{x}=\frac{4}{6} \quad \therefore x=7.5 \mathrm{~cm}
$$

(b)

Area of $\triangle \mathrm{PQS}=\left(\frac{2}{3}\right)^{2} \times$ area of $\triangle \mathrm{PQR}=8 \mathrm{~cm}^{2}$

Exercise 14

1 (a) $10+8+8+10+\frac{106^{\circ}}{360^{\circ}} \times 2 \times 3.142 \times 10$
$=36+18.50=54.5 \mathrm{~m}$ (to 3 sf)
(b) $2 \times \frac{1}{2} \times(4+10) \times 8+\frac{106^{\circ}}{360^{\circ}} \times 3.142 \times 10^{2}$
$=112+92.51=204.5 \mathrm{~m}^{2}$ (to 3sf)
2 Shaded area $=$ area of sector $\mathrm{OABC}-$ area of $\triangle \mathrm{OAC}$

$$
\begin{aligned}
& =\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^{2}-\frac{1}{2} \times 7^{2} \\
& =38.5-24.5=14 \mathrm{~cm}^{2}
\end{aligned}
$$

3 (a) $V=\pi r_{\text {rod }}{ }^{2} h=\frac{22}{7} \times 0.7^{2} \times 40=61.6 \mathrm{~cm}^{3}$
(b) $A=$ area of circle of blade - area of hole

$$
=\pi r_{\text {blade }}^{2}-\pi r_{\text {rod }}^{2}=\pi\left(r_{\text {blade }}+r_{\text {rod }}\right)\left(r_{\text {blade }}-r_{\text {rod }}\right)
$$

$$
=\frac{22}{7} \times(7+0.7) \times(7-0.7)=152.46 \mathrm{~cm}^{2}
$$

(c) $V=$ area \times height $=152.46 \times 2=304.92 \mathrm{~cm}^{3}$
(d) Mass $=$ Density \times Volume

Total mass $=$ mass of blade + mass of rod $=3 \times 304.92+6 \times 61.6$

$$
=1284.36 \mathrm{~g}
$$

4 (a) $\mathrm{AP}=\sqrt{10^{2}-8^{2}}=6 \mathrm{~cm}$

$$
\mathrm{PC}=\sqrt{17^{2}-8^{2}}=15 \mathrm{~cm}
$$

$\therefore \mathrm{AC}=\mathrm{AP}+\mathrm{PC}=21 \mathrm{~cm}$
(b) $A=2 \times$ area of $\triangle \mathrm{ABC}$

$$
=2 \times \frac{1}{2} \times 21 \times 8=168 \mathrm{~cm}^{2}
$$

(c) $V=$ area of cross-section \times length

$$
=168 \times 25=4200 \mathrm{~cm}^{3}
$$

Exercise 15

1

simsiky@gmail.com

Exercise 16

1 (a) $\mathrm{DB}=\sqrt{4.2^{2}+2.5^{2}}=4.89 \mathrm{~m}$
(b) $\tan \angle \mathrm{ECB}=\frac{\mathrm{EB}}{\mathrm{CE}}=\frac{4.2}{6}=0.7$

$$
\therefore \angle \mathrm{ECB}=\tan ^{-1} 0.7=35.0^{\circ}
$$

(c)
$\sin \angle C A E=\frac{C E}{A C} \quad \therefore A C=\frac{6}{\sin 42^{\circ}}=8.97 m$
2
$\mathrm{BD}=\mathrm{AB} \times \tan \angle \mathrm{DAB}=20 \times \tan 40^{\circ}=16.78 \mathrm{~cm}$
$\mathrm{BC}=20 \times \tan 25^{\circ}=9.32 \mathrm{~cm}$
$\mathrm{CD}=\mathrm{BD}-\mathrm{BC}=16.78-9.32=7.46=7.5 \mathrm{~cm}$
$3 \mathrm{BC}=\sqrt{5^{2}-3^{2}}=4 \mathrm{~cm}$
$\therefore \cos \theta=-\cos \left(180^{\circ}-\theta\right)=-\frac{4}{5}$
4 Area of segment $=$ Area of sector - Area of triangle
$A=\frac{54^{\circ}}{360^{\circ}} \times \pi \times 8^{2}-\frac{1}{2} \times 8 \times 8 \times \sin 54^{\circ}$
$=30.16-25.89=4.27 \mathrm{~cm}^{2}$
5 (a) $x=4 \times \tan 55^{\circ}=5.71 \mathrm{~cm}$
(b) $x=\frac{10}{\cos 35^{\circ}}=12.2 \mathrm{~m}$
(c) $x^{2}=3^{2}+5^{2}-2 \times 3 \times 5 \times \cos 68^{\circ}=22.76$ $\therefore x=4.77 \mathrm{~cm}$

$$
\sin \theta=\frac{5 \times \sin 68^{\circ}}{x}=0.9719
$$

$\therefore \theta=\sin ^{-1} 0.9719=76.4^{\circ}$
(d) $x^{2}=5^{2}+9^{2}-2 \times 5 \times 9 \times \cos 130^{\circ}=131.85$

$$
\therefore x=11.5 \mathrm{~cm}
$$

$$
\sin \theta=\frac{9 \times \sin 130^{\circ}}{x}=0.60 \quad \therefore \theta=\sin ^{-1} 0.60
$$

$=36.9^{\circ}$
(e) $\cos \theta=\frac{10^{2}+8^{2}-7^{2}}{2 \times 10 \times 8}=0.71875$

$$
\therefore \theta=\cos ^{-1} 0.71875=44.0^{\circ}
$$

$$
x^{2}=4^{2}+5^{2}-2 \times 4 \times 5 \times \cos \theta=12.25 \therefore x=3.5 \mathrm{~cm}
$$

Exercise 17

1 (a) $\binom{3}{1} \quad$ (b) $\left(\begin{array}{lll}3 & 5 & -5\end{array}\right) \quad$ (c) $\left(\begin{array}{cc}3 & 0 \\ 1 & 13\end{array}\right)$
$\left(\begin{array}{ll}12 & -11\end{array}\right)(\mathrm{e})\left(\begin{array}{ccc}-6 & 4 & 16 \\ 8 & 10 & 12\end{array}\right)$
2 (a) (8) (b) $\left(\begin{array}{ll}6 & 3 \\ 4 & 2\end{array}\right)$ (c) $\left(\begin{array}{ll}-3 & 1\end{array}\right)(d)\left(\begin{array}{cc}-1 & 6 \\ 2 & 8\end{array}\right)$
(e) $\left(\begin{array}{ccc}8 & -8 & 10 \\ 2 & 5 & -8\end{array}\right)$

3 (a) $\left(\begin{array}{ll}0 & 0 \\ 5 & 6\end{array}\right) \quad$ (b) $\left(\begin{array}{cc}3 & 6 \\ -1 & 0\end{array}\right)$ (c) $\left(\begin{array}{cc}2 & 4 \\ 11 & 14\end{array}\right)$
$\left(\begin{array}{ll}3 & 2 \\ 5 & 2\end{array}\right) \quad$ (e) $\left(\begin{array}{cc}-7 & -10 \\ 8 & 12\end{array}\right)$
$\left(\begin{array}{cc}7 & 10 \\ 15 & 22\end{array}\right)-\left(\begin{array}{cc}-3 & -2 \\ 2 & 0\end{array}\right)=\left(\begin{array}{cc}10 & 12 \\ 13 & 22\end{array}\right)$
$4 \mathrm{AB} \quad=\left(\begin{array}{cc}4 & 1+2 b \\ 2 a-1 & a-b\end{array}\right), \quad \mathrm{BA} \quad=$

$$
\left(\begin{array}{cc}
2+a & 4-b \\
1+a b & 2-b
\end{array}\right)
$$

$\therefore a=2, b=1$
$52 a \times 1-(-4) \times a=12 \quad \therefore a=2$
$6 \operatorname{det}=x(x+8)-3(x+2)=0$ $(x+6)(x-1)=0 \quad \therefore x=-6,1$
7 (a) $\binom{x}{y}=\frac{1}{7}\left(\begin{array}{cc}5 & 1 \\ -2 & 1\end{array}\right)\binom{1}{16}=\binom{3}{2}$
(b) $\binom{x}{y}=\frac{1}{-7}\left(\begin{array}{cc}-2 & -1 \\ -3 & 2\end{array}\right)\binom{7}{7}=\binom{3}{1}$

$$
\text { (c) }\binom{x}{y}=\frac{1}{13}\left(\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right)\binom{14}{-5}=\binom{1}{-4}
$$

Exercise 18

1 (a) $\underline{a}+\underline{b}=\binom{2}{6} \quad$ (b) $\underline{a}-\underline{b}=\binom{4}{-2}$
$\underline{3 a}+2 \underline{b}=\binom{7}{14}$
(d) $|\underline{a}|=\sqrt{3^{2}+2^{2}}=\sqrt{13}$ (e)
$|\underline{b}|=\sqrt{(-1)^{2}+4^{2}}=\sqrt{17}$
(f) $|\underline{a}+\underline{b}|=\sqrt{2^{2}+6^{2}}=\sqrt{40}$
(g) $|\underline{a}-\underline{b}|=\sqrt{4^{2}+(-2)^{2}}=\sqrt{20}$

2 (a) (i) $\overrightarrow{\mathrm{AB}}=-\underline{a}+\underline{b}$
(ii) $\overrightarrow{\mathrm{OM}}=\overrightarrow{\mathrm{OA}}+\frac{1}{3} \overrightarrow{\mathrm{AB}}=\underline{a}+\frac{1}{3}(-\underline{a}+\underline{b})=\frac{2}{3} \underline{a}+\frac{1}{3} \underline{b}$
(b) $\overrightarrow{\mathrm{AN}}=-\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{ON}}=-\underline{a}+\frac{1}{2} \underline{b}$
(c)

$$
\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{OA}}+h \overrightarrow{\mathrm{AN}}=\underline{a}+h\left(-a+\frac{1}{2} \underline{b}\right)
$$

$$
=(1-h) \underline{a}+\frac{1}{2} h \underline{b}
$$

3 (a)
(i) $\overrightarrow{\mathrm{OE}}=\frac{1}{3} \underline{a}$ (ii) $\overrightarrow{\mathrm{BE}}=-\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{OE}}=-\underline{b}+\frac{1}{3} \underline{a}$
(b) (i) $\overrightarrow{\mathrm{BF}}=k\left(-\underline{b}+\frac{1}{3} \underline{a}\right)$
(ii) $\overrightarrow{\mathrm{OF}}=\overrightarrow{\mathrm{OB}}+\overrightarrow{\mathrm{BF}}=\frac{1}{3} k \underline{a}+(1-k) \underline{b}$
(c) $\overrightarrow{\mathrm{OF}}=h \overrightarrow{\mathrm{OC}}=h(\underline{a}+\underline{b})$
(d) $\frac{1}{3} k=h, 1-k=h \quad \therefore k=\frac{3}{4}, h=\frac{1}{4}$
(e) $\overrightarrow{\mathrm{OF}}=\frac{1}{4} \overrightarrow{\mathrm{OC}} \quad \therefore \mathrm{OF}: \mathrm{FC}=1: 3$

4 (a) $\overrightarrow{\mathrm{BE}}=k \overrightarrow{\mathrm{CB}}=k \overrightarrow{\mathrm{OA}}=k a$
(b)
$\overrightarrow{\mathrm{DE}}=h \overrightarrow{\mathrm{OD}}=h(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AD}})=h\left(\overrightarrow{\mathrm{OA}}+\frac{2}{3} \overrightarrow{\mathrm{AB}}\right)$

$$
=h\left(\overrightarrow{\mathrm{OA}}+\frac{2}{3} \overrightarrow{\mathrm{OC}}\right)=h\left(\underline{a}+\frac{2}{3} \underline{c}\right)
$$

(c) $\overrightarrow{\mathrm{DE}}=\overrightarrow{\mathrm{DB}}+\overrightarrow{\mathrm{BE}}=\frac{1}{3} \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BE}}=\frac{1}{3} \underline{c}+k \underline{a}$
$h\left(\underline{a}+\frac{2}{3} \underline{c}\right)=k \underline{a}+\frac{1}{3} \underline{c} \quad h=k, \frac{2}{3} h=\frac{1}{3} \quad \therefore h=k=\frac{1}{2}$

Exercise 19

1 (a)

2 (a)
(b) R

(b) $(3,2)$ (c) 270° clockwise or 90° anticlockwise
$4\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{lll}1 & 2 & 2 \\ 1 & 1 & 2\end{array}\right)=\left(\begin{array}{ccc}1 & 2 & 2 \\ -3 & -3 & -6\end{array}\right)$
$a=1, \mathrm{~b}=0, \mathrm{c}=0, \mathrm{~d}=-2 \quad \therefore\left(\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right)$
The scale factor is -2 ,
5 (a)

(b) Join A to D and C to F. The point of intersection $(3,2)$ is the centre of enlargement.
$\frac{\text { image length }}{\text { object length }}=\frac{\mathrm{DE}}{\mathrm{AB}}=\frac{-4}{2}=-2=$ scale factor
\therefore Enlargement with centre $(3,2)$ and scale factor -2 .
(c) The invariant line is parallel to the x-axis, so let the line be $y=a$.
$\mathrm{A}(2,2)$ moves 4 units and $\mathrm{C}(2,5)$ moves 10 units.
$\frac{4}{2-a}=\frac{10}{5-a} \therefore a=0$ The invariant line is $y=0$
i.e. x-axis. Shear factor is $\frac{4}{2-0}=2$.
\therefore Shear with x-axis invariant and shear factor 2 .

Exercise 20

1 (a) (i) $\left(60^{\circ} \mathrm{N}, 60^{\circ} \mathrm{W}\right)\left(\right.$ ii) $\left(30^{\circ} \mathrm{N}, 30^{\circ} \mathrm{E}\right)$
(iii) $\left(30^{\circ} \mathrm{S}, 30^{\circ} \mathrm{E}\right)$
(b) (i) Difference in latitude $=30^{\circ}+30^{\circ}=60^{\circ}$

Distance $=\frac{60^{\circ}}{360^{\circ}} \times 2 \pi \mathrm{R}=6672 \mathrm{~km}$
(ii) Difference in longitude $=60^{\circ}+30^{\circ}=90^{\circ}$

Distance $=\frac{90^{\circ}}{360^{\circ}} \times 2 \pi \mathrm{R} \cos 60^{\circ}=5004 \mathrm{~km}$
(c) (i) 14:00 hours
(ii) Difference $=\frac{90^{\circ}}{15^{\circ}}=6$ hours

14:00 -6 hours $=08: 00$ hours
2 (a) Difference in latitude between A and B (C and D)
$=60^{\circ}=60 \times 60^{\prime}=3600^{\prime}$
Distance AB $=3600 \times \cos 45^{\circ}=2545.5 \mathrm{~nm}$
Distance $\mathrm{CD}=3600 \times \cos 20^{\circ}=3382.8 \mathrm{~nm}$
Difference in longitude between B and D (A and C) $=25^{\circ}=25 \times 60^{\prime}=1500^{\prime}$
Distance BD $=$ Distance AC $=1500 \mathrm{~nm}$
\therefore Distance by jet $\mathrm{X}=2545.5+1500=4045.5$

$$
=4046 \mathrm{~nm}
$$

\therefore Distance by jet $\mathrm{Y}=1500+3382.8=4882.8$
$=4483 \mathrm{~nm}$
(b)

Time $=\frac{\text { Distance }}{\text { Speed }}=\frac{4045.5}{400}=10.1=10$ hours
(c)

Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{4882.8}{10.1}=483=480$ knots

Exercise 21

1 (a) $\frac{1}{6}$ (b) $\frac{3}{6}=\frac{1}{2}$ (c) $\frac{3}{6}=\frac{1}{2}$
2
$\mathrm{P}(\mathrm{H}$ and T$)=\mathrm{P}(\mathrm{HT})+\mathrm{P}(\mathrm{TH})=\frac{1}{2} \times \frac{1}{2}+\frac{1}{2} \times \frac{1}{2}=\frac{1}{2}$
3 These events are independent.
$\mathrm{P}(\mathrm{R})=\frac{1}{6}, \mathrm{P}(\mathrm{Y})=\frac{2}{6}=\frac{1}{3}, \mathrm{P}(\mathrm{B})=\frac{3}{6}=\frac{1}{2}$
(a) $\mathrm{P}(\mathrm{YY})=\mathrm{P}(\mathrm{Y}) \times \mathrm{P}(\mathrm{Y})=\frac{1}{3} \times \frac{1}{3}=\frac{1}{9}$
(b)
$P(R$ and $B)=2 \times P(R) \times P(B)=2 \times \frac{1}{6} \times \frac{1}{2}=\frac{1}{6}$
(c) $\mathrm{P}($ no R for each selection $)=1-\frac{1}{6}=\frac{5}{6}$

So for two selections, $\mathrm{P}($ no R$)=\frac{5}{6} \times \frac{5}{6}=\frac{25}{36}$
(d) P (two beads of the same colour)
$=P(R R)+P(Y Y)+P(B B)$

$$
=\frac{1}{6} \times \frac{1}{6}+\frac{1}{3} \times \frac{1}{3}+\frac{1}{2} \times \frac{1}{2}=\frac{7}{18}
$$

(e) P(two beads of different colours)

$$
=1-\mathrm{P}(\text { two bead of the same colour })
$$

$=1-\frac{7}{18}=\frac{11}{18}$
$4 \mathrm{P}(\mathrm{W}$ from Y$)=\mathrm{P}(\mathrm{W}$ from X$) \times \mathrm{P}(\mathrm{W}$ from Y$)$

$$
+\mathrm{P}(\mathrm{~B} \text { from } \mathrm{X}) \times \mathrm{P}(\mathrm{~W} \text { from } \mathrm{Y})
$$

$$
=\frac{2}{5} \times \frac{4}{6}+\frac{3}{5} \times \frac{3}{6}=\frac{17}{30}
$$

5 (a) The tree diagram is shown below.

(b) (i) $\mathrm{P}(\mathrm{RR})=\frac{3}{10} \times \frac{2}{9}=\frac{1}{15}$
(ii) $\mathrm{P}(\mathrm{W}$ and B$)=\mathrm{P}(\mathrm{WB})+\mathrm{P}(\mathrm{BW})$
$=\frac{2}{10} \times \frac{5}{9}+\frac{5}{10} \times \frac{2}{9}=\frac{2}{9}$
(iii) $\mathrm{P}(\mathrm{B}$ and R$)=\mathrm{P}(\mathrm{BR})+\mathrm{P}(\mathrm{RB})$

$$
=\frac{5}{10} \times \frac{3}{9}+\frac{3}{10} \times \frac{5}{9}=\frac{1}{3}
$$

(iv) $\mathrm{P}($ no B$)=\mathrm{P}(\mathrm{WW})+\mathrm{P}(\mathrm{WR})+\mathrm{P}(\mathrm{RW})+\mathrm{P}(\mathrm{RR})$ $=\frac{2}{10} \times \frac{1}{9}+\frac{2}{10} \times \frac{3}{9}+\frac{3}{10} \times \frac{2}{9}+\frac{3}{10} \times \frac{2}{9}=\frac{2}{9}$
(v) P (two balls of the same colour)
$=\mathrm{P}(\mathrm{WW})+\mathrm{P}(\mathrm{BB})+\mathrm{P}(\mathrm{RR})$
$=\frac{2}{10} \times \frac{1}{9}+\frac{5}{10} \times \frac{4}{9}+\frac{3}{10} \times \frac{2}{9}=\frac{14}{45}$
(vi) P (two balls of different colours)
$=1-\mathrm{P}$ (two balls of the same colour)
$=1-\frac{14}{45}=\frac{31}{45}$

Exercise 22

1 1day $=24$ hours $\frac{360^{\circ}}{24}=15^{\circ}$ represents 1 hour.
(a) $\frac{120^{\circ}}{360^{\circ}}=\frac{1}{3}$
(b) $\frac{105^{\circ}}{15^{\circ}}=7$ hours
(c) $2 \times 15^{\circ}=$
30°
(d) Angle of sector 'eating'
$=360^{\circ}-105^{\circ}-120^{\circ}-30^{\circ}-90^{\circ}=15^{\circ}$
$\frac{15}{360} \times 100=4.16=4.2 \%$
2 Arrange the numbers: $2,3,4,4,5,6,6,6,7,8$ (a)
mean $=\frac{2+3+4+4+5+6+6+6+7+8}{10}=5.1$
(b) mode $=6$ (c) median $=\frac{5+6}{2}=5.5$

3 (a)

(b) Redraw the table.

Marks	$0-9$	$10-19$	$20-29$
Centre (x)	4.5	14.5	24.5
Frequency (f)	2	7	23
Product $(f x)$	9	101.5	563.5

Marks	$30-39$	$40-49$	$50-59$
Centre (x)	34.5	44.5	54.5
Frequency (f)	15	6	3
Product $(f x)$	517.5	267	163.5

Marks	$60-69$	$70-79$	Total
Centre (x)	64.5	74.5	
Frequency (f)	2	2	60
Product $(f x)$	129	149	1900

(i) The number of pupil $=$ total $f=60$
(ii) Mean $=\frac{\text { Sum of } f x}{\text { total } f}=\frac{1900}{60}=31.7$ (to 1 dp)

4 (a)

Mean $=\frac{\text { Sum of } f x}{\text { total } f}=\frac{15 \times 8+25 \times 17+\cdots+75 \times 6}{100}$

$$
=\frac{4240}{100}=42.4 \mathrm{~min}
$$

(b)

x	≤ 20	≤ 30	≤ 40	≤ 50	≤ 60	≤ 70	≤ 80
f	8	25	48	68	83	94	100

(c)

(d) (i) The median $=41$ minutes
(ii) The interquartile range $=54-30=24$ minutes
(e) The frequency at 35 minutes is 37 .

The probability $=\frac{37}{100}$

Exercise 23

1 (a) $11+3=14$ and $14+3=17$
(b) $2-2=0$ and $0-2=-2$
(c) $100 \times 10=1000$ and $1000 \times 10=10000$
(d) $-2 \times\left(-\frac{1}{2}\right)=1$ and $1 \times\left(-\frac{1}{2}\right)=-\frac{1}{2}$
(e) $11+5=16$ and $16+6=22$
(f) $6^{2}=36$ and $7^{2}=49$

2 (a) $a=1, d=2 \therefore a_{n}=1+(n-1) \times 2=2 n-1$
(b) $a=10, d=-4$
$\therefore a_{n}=10+(n-1) \times(-4)=-4 n+6$
(c) $a=2, r=3 \therefore a_{n}=2 \times 3^{n-1}$
(d) $a_{n}=(n-1)^{2} \quad$ (e) $a_{n}=n^{3}$

3 Sequence: 5, 8, 11,..
(a) Each term is 3 more than the previous term.
$\therefore 4$ th term $=11+3=14$
(b) first term $(a)=5$, common difference $(d)=3$
$\therefore a_{n}=5+(n-1) \times 3=3 n+2$
(c) $44=3 n+2 \quad \therefore n=14$
(d) $a_{n}=5+(25-1) \times 3=77$

[^0]: simsiky@gmail.com

[^1]: 79541377867576781054710
 34865254517266495763

