COLLEGE ALFRED SAKER B.P. 8038

3ème Séquence (D.S. Nº 1 du 2è trimestre)

Tle C	ÉPREUVE DE MATHÉMATIQUES	Durée : 4H

EXERCICE 1: 3,5 Points

On considère la fonction f définie sur \mathbb{R} par : $f(x) = (1 - 2x)e^{2x}$.

On note $f^{(1)} = f'$, $f^{(2)} = f''$, $f^{(3)} = f'''$,, $f^{(n)}$ les dérivées successives de f.

- 1. Calculer $f^{(2)}(x)$ et $f^{(3)}(x)$.
- 2. Montrer par récurrence que pour tout entier naturel n non nul, $f^{(n)}(x) = 2^n (1 n 2x)e^{2x}$.
- 3. Pour tout entier naturel non nul, la courbe représentative de $f^{(n)}$ admet une tangente horizontale en un point M_n .
 - a. Calculer les coordonnées X_n et Y_n de M_n.

Vérifier que les points M_n appartiennent à la courbe d'équation $y = \frac{e^{2x}}{4^x}$.

- b. Vérifier que la suite (x_n) est une suite arithmétique dont on donnera le premier terme et la raison.
- c. Vérifier que la suite (Y_n) est une suite géométrique dont on donnera le premier terme et la raison. Étudier la limite de la suite (Y_n)

EXERCICE 2: 2,5 Points

ABC est un triangle équilatéral de sens direct. On désigne par r_1 la rotation de centre A et d'angle $\frac{\pi}{3}$, par r_2 la rotation de centre B et d'angle $\frac{2\pi}{3}$.

Pour tout M du plan, on pose $N = r_1(M)$ et $M' = r_2(N)$.

Soit r la transformation telle que $r = r_2 or_1$.

- 1. Soit D le symétrique de C par rapport à la droite (AB) et Ω le milieu du segment [BD]. Déterminer r(B).
- 2. a. Démontrer que les points M, N et M' sont alignés si seulement si $Mes(\overrightarrow{M}\Omega,\overrightarrow{M}A) = \frac{\pi}{3}(\pi)$.
 - b. En déduire que l'ensemble (Γ) des points M du plan tels que M, N et M' sont alignés est un cercle passant par les points A et Ω . Construire (Γ).

EXERCICE 3: 3 Points

On considère la fonction g définie sur \mathbb{R} par $g(x) = (x + 1)^2 e^{-x}$.

Soit (C) la représentation graphique de la fonction g dans un repère orthonormé (0, 1, 3).

- 1. a. Calculer les limites de q en $-\infty$ et $+\infty$.
 - b. Déterminer les asymptotes à la courbe (C).
 - c. Étudier les variations de *g* et donner son tableau de variation.
- 2. Tracer (C).
- 3. a. Montrer que l'équation g(x) := 2 admet une solution unique α et que $\alpha \in [-2, -1]$.
 - b. Montrer que $\alpha = -1 \sqrt{2e^{\frac{\alpha}{2}}}$.

EXERCICE 4: 4 Points

ABCD est un carré direct. I, J, K et L sont les milieux respectifs des segments [AB], [BC], [CD] et [DA].

- 1. On pose $f = S_{(IK)} or(A, \frac{\pi}{2})$.
 - a. Déterminer f (A) et f (B).
 - b. En déduire que f est une symétrie glissée.
 - c. Déterminer l'axe de f.
 - d. Déterminer f (I) et en déduire le vecteur directeur de f.
- 2. On pose $g = r(A, \frac{\pi}{2})$ o $S_{(IK)}$.
 - a. Déterminer g (A) et g (B).
 - b. En déduire que g est une symétrie glissée dont on déterminera l'axe et le vecteur.
- 3. Déterminer la nature et les éléments caractéristiques de gof
- 4. a. Déterminer l'image de B par fog.
 - b. Soit E le point d'intersection des droites (BC) et (IL); Déterminer l'image de E par fog.
 - c. En déduire la nature et les éléments caractéristiques de fog.

EXERCICE 5: 7 Points

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \ln(1 + e^{-x})$.

On note Γ la courbe de f dans un repère orthonormé (0, I. J).

- 1. Déterminer les limites de f en $-\infty$ et en $+\infty$.
- 2. Étudier le sens de variation de f et dresser son tableau de variation.
- 3. Montrer que Γ admet une asymptote (D) d'équation : Y = -x et préciser la position de Γ par rapport à (D).
- 4. Tracer (D) et Γ (unité graphique : 4cm).
- 5. Soit x_0 un nombre réel non nul. On note : M et N les points de Γ d'abscisses respectives x_0 et $-x_0$.
 - a. Vérifier que $f(x_0) f(-x_0) = -x_0$ et en déduire que la droite (MN) garde une direction fixe que l'on précisera.
 - b. Montrer que l'on a : $f'(x_0) + f'(-x_0) = -1$ et en déduire que les tangentes à Γ en M et N se coupent sur l'axe des ordonnées.
- 6. Soit u et v les fonctions définies sur $[0, +\infty[$ par :

$$u(t) = \ln(1 + t) - t$$
 et $v(t) = \ln(1 + t) - t + \frac{1}{2}t^2$.

Étudier les variations de u et v puis en déduire que pour tout réel t positif on a :

$$t-\frac{1}{2}t^2\leq \ln(l+t)\leq t.$$

- 7. Soit n un entier naturel non nul. On considère le nombre $S_n = f(1) + f(2) + ... + f(n)$.
 - a. Démontrer que : $\frac{1-e^{-n}}{e-1} \frac{1}{2} x \frac{1-e^{-2n}}{e^2-1} \le \mathcal{S}_n \le \frac{1-e^{-n}}{e-1}$.
 - b. On admet que la suite (S_n) a une limite réelle L: Montrer que $\left|L \frac{I}{e-I}\right| \leq \frac{I}{2(e^2 I)}$.

http://maths.educamer.org