Ministère des Enseignements Secondaires Office du Baccalauréat du Cameroun

Examen: Baccalauréat 2011

Série: C – E Epreuve: MATHEMATIQUES Durée: 4h Coefficient: 5(C)/4(E)

L'épreuve comporte sur deux pages, trois exercices et un problème, tous obligatoires.

Exercice 1 (3points). Pour tout entier naturel n, on considère $I_n = \int_0^{\frac{\pi}{2}} e^{-\frac{nx}{2}} \sin x$ et $J_n = \int_0^{\frac{\pi}{2}} e^{-\frac{nx}{2}} \cos x$.

- 1. En utilisant une intégration par parties montrer que $2I_n + nJ_n = 2$ et $nI_n 2J_n = -2e^{-\frac{n\pi}{4}}$. [1.5pt]
- 2. Déduire de 1. les expressions de I_n et J_n en fonction de n, pour tout entier naturel n. [1pt]
- 3. Les suites (I_n) et (J_n) sont elles convergentes? [0.5pt]

Exercice 2 (3 points). L'espace est muni d'un repère orthonormal direct $(0, \vec{t}, \vec{j}, \vec{k})$. On donne les points A(-1,2,1); B(1,-6,-1); C(2,2,2); I(0,1,-1).

- 1. (a) Calculer $\overrightarrow{AB} \wedge \overrightarrow{AC}$. [0.5pt]
 - (b) Déterminer une équation cartésienne du plan (*P*) contenant les points *A*, *B* et *C*. [0.5pt]
- 2. (a) Déterminer les coordonnées du point H, projeté orthogonal de I sur le plan (P). [0.75pt]
 - (b) (S) est la sphère de centre I et de rayon 3 ; déterminer l'intersection du plan (P) et de la sphère (S). [1.25pt]

Exercice 3 (4 points). Le plan complexe est muni d'un repère orthogonal $(O, \vec{e}_1, \vec{e}_2)$. A et B sont deux points du plan tels que AB = 6cm. r_1 est la rotation de centre A et d'angle $\frac{\pi}{3}$; r_2 est la rotation de centre B et d'angle $-\frac{2\pi}{3}$, r_2^{-1} est la transformation réciproque de r_2 .

- Si M est un point du plan, on note M_1 l'image du point M par r_1 et M_2 l'image du point M par r_2 .
 - 1. On pose $f = r_1 \circ r_2^{-1}$.
 - (a) Montrer que f est une symétrie centrale et déterminer $f(M_2)$. [0.75pt]
 - (b) En déduire que le milieu I du segment $[M_1M_2]$ est le centre de la symétrie f. [0.5pt]
 - 2. On suppose que A et B ont pour affixes respectives -3 et +3; on note z, z_1 et z_2 les affixes respectives des points M, M_1 et M_2 .
 - (a) Exprimer z_1 et z_2 en fonction de z. [1pt]
 - (b) Montrer que si M est distinct de A et de B, on a : $\frac{z_2 z}{z_1 z} = i\sqrt{3} \frac{z 3}{z + 3}$. [0.75pt]
 - (c) En déduire que : $(\overrightarrow{MM_1}; \overrightarrow{MM_2}) \equiv (\overrightarrow{MA}; \overrightarrow{MB}) + \frac{\pi}{2}[2\pi].$ [0.5pt]
 - (d) Déterminer et construire l'ensemble (T) des points M du plan tels que M, M_1 et M_2 soient alignés. [0.5pt]

Problème:(10.points)

On considère la famille de fonctions f_{λ} définies par $f_{\lambda}(x) = 1 + \ln(1 + \lambda x)$ où λ est un réel non nul; ln désigne le logarithme népérien, (C_{λ}) la courbe de f_{λ} et (D) la droite d'équation y = x dans le plan muni du repère orthonormé $(O, \vec{\imath}, \vec{\jmath})$.

Partie A : 4points. Recherche des points d'intersection de (C_{λ}) et (D)

- 1. Déterminer l'ensemble de définition de f_{λ} . [0.5pt] On pose $\varphi_{\lambda}(x) = f_{\lambda}(x) - x$.
- 2. On suppose $\lambda < 0$. Etudier les variations de φ_{λ} et dresser son tableau de variations. En déduire le nombre de points d'intersection de (C_{λ}) et (D).

- 3. (a) On suppose $\lambda > 0$. Etudier les variations de φ_{λ} et dresser son tableau de variations. Etablir que la plus grande valeur prise par φ_{λ} quand x décrit l'ensemble de définition est $m(\lambda) = \frac{1}{\lambda} + \ln \lambda$. [1pt]
 - (b) Etudier les variations de m sur $]0; +\infty[$; en déduire le signe de $m(\lambda)$. [1pt]
 - (c) Déterminer le nombre de points communs à (C_{λ}) et (D) lorsque λ est positif. [0.5pt]

Partie B : 2.75points. *Etude du cas particulier* $\lambda = 1$.

- 1. (a) Soit (Γ) la courbe de la fonction logarithme népérien; trouver une translation qui transforme (Γ) en (C_1). [0.5pt]
 - (b) Représenter graphiquement (C_1) et la droite (D). On prendra pour unité 3cm sur les axes. [0.75pt]
- 2. On appelle P et Q les points d'intersection de (C_1) et (D); P est le point d'abscisse négative p et Q est le point d'abscisse positive q.

 Démontrer que 2 < q < 3.
- 3. L'unité d'aire étant le cm^2 , calculer en fonction de p et q l'aire du domaine compris entre (C_1) , (D) et les droites d'équations x=p, x=q. [1pt] On pourra utiliser une intégration par parties.

Partie C: 3points Valeur approchée de q.

On se propose de calculer une valeur approchée de q; on définit la suite (u_n) par $\begin{cases} u_0 = 2 \\ u_{n+1} = f_1(u_n) \end{cases}$ pour tout $n \in \mathbb{N}$.

- 1. Représenter à l'aide de la courbe (C_1) les termes u_1 et u_2 sur (O, \vec{t}). [0.5pt]
- 2. Montrer que la suite (u_n) est croissante et majorée par q. [0.75pt]
- 3. Montrer en utilisant l'inégalité des accroissements finis que $q u_{n+1} \le \frac{1}{3}(q u_n)$ pour tout entier naturel n. [0.75pt]
- 4. En déduire que pour tout entier naturel $n: q-u_n \le \frac{q-u_0}{3^n}$, et que la suite (u_n) converge vers q. [0.75pt]
- 5. Déterminer une valeur approchée u_k de q à 10^{-2} près en utilisant la suite (u_n) . [0.5pt]