S475/I
SUBSID. MATHEMATICS
Paper 1
Nov./ Dec. 2018
2 ²/₄ hours

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

SUBSIDIARY MATHEMATICS

Paper I

2 hours 40 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section A and only four questions in section B.

Any additional question(s) answered will not be marked.

Each question in section A carries 5 marks while each question in section B carries 15 marks.

All working must be shown clearly.

Begin each answer on a fresh sheet of paper.

Where necessary, take acceleration due to gravity $g = 9.8 \text{ ms}^{-2}$.

Squared paper is provided.

Silent, non programmable scientific calculators and mathematical tables with a list of formulae may be used.

© 2018 Uganda National Examinations Board.

https://www.edukamer.info

SECTION A: (40 MARKS)

Answer all the questions in this section.

- 1. The roots of the equation $4x^2 + 9x k = 0$ are α and 2. Find the values of α and k. (05 marks)
- 2. A random variable X has a probability distribution given by

$$P(X=x) = \begin{cases} \frac{x}{10}, & x = 1, 2, 3, \\ 0, & \text{elsewhere} \end{cases}$$

Calculate:

(a)
$$P(1 \le X < 3)$$
.

(03 marks)

(b) the mean of X, E(X).

(02 marks

3. Show that $\frac{1-\cos^2\theta}{\sec^2\theta-1}=\cos^2\theta.$

Hence, solve the equation $\frac{1-\cos^2\theta}{\sec^2\theta-1} = \frac{3}{4}$ for $0^{\circ} \le \theta \le 90^{\circ}$. (05 marks)

4. Events A and B are such that $P(A) = \frac{6}{13}$, $P(B) = \frac{2}{5}$ and $P(A/B) = \frac{1}{4}$.

Find:

(a) $P(A \cap B)$.

(02 marks)

(b) $P(A \cup B)$.

(03 marks)

5. Express $\frac{4}{\sqrt{3}+\sqrt{2}} + \frac{4}{\sqrt{3}-\sqrt{2}}$ in the form $b\sqrt{c}$ where b and c are integers.

(05 marks)

6. The marks scored in the test by 8 students are: 5, 9, 11, 15, 19, 15, 10, 14. Determine the:

(a) mean mark.

(02 marks)

(b) variance.

(03 marks)

7. Evaluate $\int_{-1}^{2} \frac{2x^4 - x^5}{x^2} dx$ (05 marks)

8. A force of 65N is inclined at an angle of θ to the horizontal. The horizontal component of the force is 25N.

Calculate the:

(a) angle θ .

(03 marks)

(b) vertical component of the force.

(02 marts)

SECTION B: (60 MARKS)

Answer only four questions from this section.

9. The table below shows scores by 10 students (A to J) in Physics and Mathematics tests.

Student	A	B	C	D	E	F	G	H	I	J
Methematics (r)	28	20	40	28	21	31	36	29	33	24
Physics (y)	30	20	40	28	22	35	35	27	31	23

- (a) (i) Plot a scatter diagram for the given data.
 - (ii) Draw a line of best fit on the scatter diagram.
 - (iii) Estimate the score in Mathematics for a student who scored 37 in Physics. (08 marks)
- (b) Calculate the rank correlation coefficient for the data and comment on your result.

 (07 marks)
- 10. Points A, B and C have position vectors, 2j, 4i and 2i 2j respectively in the x y plane.
 - (a) Find 20A + 30B 40C.

(04 marks)

- (b) Determine;
 - (i) AB and AC.

(04 marks)

(ii) *AB • AC*.

(02 marks)

(iii) angle BAC.

(05 marks)

- 11. A factory sells animal food in bags. The weights of the bags are normally distributed with mean weight 50kg and standard deviation 2.8 kg.
 - (a) Find the probability that the weight of any bag selected at random;
 - (i) is more than 52 kg.

(04 marks)

(ii) lies between 46 and 55 kg.

(05 marks)

- (b) Determine the percentage of bags whose weights are less than 54 kg. (06 marks)
- 12. The equation of a curve is $y = 3x^2 + 2$.
 - (a) (i) Determine the turning point of the curve.

(ii) Find the nature of the turning point.

(iii) Sketch the graph of the curve.

(07 marks)

(b) The curve and the line y = 14 intersect at the points (-2, 14) and (2, 14). Calculate the area of the region enclosed between the line and the curve. (08 marks)

13. The table below shows the sales in thousands of copies by a local Newspaper over a period of 12 weeks.

Week		2										
Number of copies sold	315	378	490	430	510	580	565	595	640	660	628	670
copies sold	315	378	490	430	510	580	262	595	640	660	628	6

- (a) Calculate the 3-week moving averages for the copies sold. (06 marks)
- (b) (i) On the same axes, plot the original data and the 3-week moving averages. (06 marks)
 - (ii) Use your graphs to estimate the number of copies sold in the 13th week. (03 marks)
- 14. A body of mass 4 kg is initially at rest at a point P whose position vector is (3i + 4j) m. A constant force F = (8i + 4j) N acts on the body causing it to move. The body passes through another point Q after 4 seconds. Find the:

(a)	acceleration of the body.	(02 marks)
(b)	velocity of the body as it passes through Q.	(03 marks)
(c)	kinetic energy of the body after the 4 seconds.	(04 marks)
(d)	distance between the points P and Q .	(06 marks)