

UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Adyanced Certificate of Education PURE MATHEMATICS

Paper 1

3 hours

NSTRUCTIONS TO CANDIDATES:

nswer all the cight questions in section \mathbf{A} and any five from section \mathbf{B}.
ny additional question(s) answered will not be marked.
all necessary working must be shown clearly.
legin each answer on a fresh sheet of paper.
iquared paper is provided.
iilent, non-programmable scientific calculators and mathematical tables with a ist of formulae may be used.

1. Show that the modulus of $\frac{(1-i)^{6}}{1+i}=4 \sqrt{2}$.
(05 marks.
2. Solve $2 \cos 2 \theta-5 \cos \theta=4$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(05 marks
3. Using the substitution $u=\tan ^{-1} x$, show that $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x=\frac{\pi^{2}}{32}$.
(05 marks
4. Given the plane $4 x+3 y-3 z-4=0$;
(a) show that the point $A(1,1,1)$ lies on the plane.
(02 marks
(b) find the perpendicular distance from the plane to the point $B(1,5,1)$.
(03 marks
5. Find the equation of the tangent to the curve $y=\frac{a^{3}}{x^{2}}$ at the point $P\left(\frac{a}{t}, a t^{2}\right)$.
(05 mark:
6. Given that $\alpha+\beta=\frac{-1}{3}$ and $\alpha \beta=\frac{2}{3}$, form a quadratic equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.
7. Find the area enclosed between the curve $y=2 x^{2}-4 x$ and the x-axis.
(05 mark
8. Given that $Q=\sqrt{80-0.1 P}$ and $E=\frac{-d Q}{d P} \cdot \frac{P}{Q}$, find E when $P=600$.
(05 mart

SECTION B: (60 MARKS)

Answer any five questions from this section. All questions carry equal marks.
9. (a) Determine the perpendicular distance of the point $(4,6)$ from the line $2 x+4 y-3=0$.
(b) Show that the angle θ, between two lines with gradients λ_{1} and λ_{2} is given by $\theta=\tan ^{-1}\left(\frac{\lambda_{1}-\lambda_{2}}{1+\lambda_{1} \lambda_{2}}\right)$.
Hence find the acute angle between the lines $x+y+7=0$ and $\sqrt{3} x-y+5=0$.
(09 marks)
10. (a) Given that $26\left(1-\frac{1}{26^{2}}\right)^{\frac{1}{2}}=a \sqrt{3}$. find the values of a.
(05 marks)
(b) Solve the simultaneous equations:

$$
\begin{array}{r}
2 x=3 y=4 z \\
x^{2}-9 y^{2}-4 z+8=0 \tag{07marks}
\end{array}
$$

11. Express $7 \cos 2 \theta+6 \sin 2 \theta$ in the form $R \cos (2 \theta-\alpha)$, where R is a constant and α is an acute angle.
Hence solve $7 \cos 2 \theta+6 \sin 2 \theta=5$ for $0^{\circ} \leq \theta \leq 180^{\circ}$.
(12 marks)
12. (a) Given that $y=\ln \left\{e^{x}\left(\frac{x-2}{x+2}\right)^{\frac{3}{4}}\right\}$, show that $\frac{d y}{d x}=\frac{x^{2}-1}{x^{2}-4}$.
(05 marks)
(b) Evaluate $\int_{0}^{4} \frac{d x}{x^{2} \sqrt{\left(25-x^{2}\right)}}$.
(07 marks)
13. Four points have coordinates $A(3,4,7), B(13,9,2), C(1,2,3)$ and $D(10, k, 6)$.

The lines $A B$ and $C D$ intersect at P. Determine the;
(a) vector equations of lines $A B$ and $C D$.
(b) value of k.
(04 marks)
(c) coordinates of P.
(02 marks)
14. Expand $\sqrt{\left(\frac{1+2 x}{1-x}\right)}$ upto the term in x^{2}.

Hence find the value of $\sqrt{\left(\frac{1.04}{0.98}\right)}$ to four significant figures.
15. (a) Differentiate $y=2 x^{2}+3$ from first principles.
(04 marks)
(b) A rectangular sheet is 50 cm long and 40 cm wide. A square of $x \mathrm{~cm}$ by $x \mathrm{~cm}$ is cut off from each comer. The remaining sheet is folded to form an open box. Find the maximum volume of the box.
(08 marks)
16. (a) Find $\int \frac{\ln x}{x^{2}} d x$.
(b) Solve the differential equation

$$
\begin{equation*}
\frac{d y}{d x}+y \cot x=x, \text { given that } y=1 \text { when } x=\frac{\pi}{2} . \tag{08marks}
\end{equation*}
$$

