UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education
PURE MATHEMATICS
Paper 1
3 hours

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section A and any five from section \mathbf{B}.
Any additional question(s) answered will not be marked.
All necessary working must be shown clearly.
Begin each answer on a fresh sheet of paper.
Squared paper is provided.
Silent non programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A: (40 MARKS)

Answer all questions in this section.

In triangle $A B C, a=7 \mathrm{~cm}, b=4 \mathrm{~cm}$ and $c=5 \mathrm{~cm}$. Find the value of:
(a) $\cos A$
(b) $\sin A$
(05 marks)
Determine the angle between the line $\frac{x+4}{8}=\frac{y-2}{2}=\frac{z+1}{-4}$ and the plane $4 x+3 y-3 z+1=0$
(05 marks)
Find $\int x^{2} e^{x} d x$
(05 marks)

Express the function $f(x)=x^{2}+12 x+32$, in the form $a(x+b)^{2}+c$. Hence find the minimum value of the function $f(x)$.
(05 marks)
A point P moves such that its distances from two points $A(-2,0)$ and $B(8,0)$ are in the ratio $A P: P B=3: 2$. Show that the locus of P is a circle.
(05 marks)
Determine the equation of the tangent to the curve $y^{3}+y^{2}-x^{4}=1$ at the point (1,1).
(05 marks)
Show that $2 \log 4+\frac{1}{2} \log 25-\log 20=2 \log 2$.
(05 marks)
The region bounded by the curve $y=x^{2}-2 x$ and the x-axis from $x=0$ to $x=2$, is rotated about the x-axis. Calculate the volume of the solid formed.

SECTION B: (60 MARKS)

Answer any five questions from this section. All questions carry equal marks.
9. The position vectors of the vertices of a triangle are $0, r$ and s, where O is the origin. Show that its area (A) is given by

$$
4 A^{2}=|r|^{2}|s|^{2}-(r \cdot s)^{2}
$$

106 marks
Hence, find the area of a triangle when $r=\binom{2}{3}$ and $s=\binom{1}{4} . \quad(06$ mark:
10. Express $5+12 i$ in polar form

Hence, evaluate $\sqrt[3]{(5+12 i)}$, giving your answers in the form $a+i b$ where a and b are corrected to two decimal places.
(12 marks
11. (a) Differentiate $\frac{x}{\sqrt{\left(1-2 x^{2}\right)}}$ with respect to x. 106 marks
(b) The period, T of a swing of a simple pendulum of length, l is given by the equation

$$
T^{2}=\frac{4 \pi^{2} l}{g}
$$

where g is the acceleration due to gravity.
An error of 2% is made in measuring the length, l. Determine the resulting percentage error in the period, T.
(06 marks,
12. (a) Show that $\tan 4 \theta=\frac{4 t\left(1-t^{2}\right)}{t^{4}-6 t^{2}+1}$, where $t=\tan \theta$.
(b) Solve the equation

$$
\sin x+\sin 5 x=\sin 2 x+\sin 4 x \text { for } 0^{\circ}<x<90^{\circ} .
$$

13. (a) The first three terms of a Geometric Progression (G.P) are 4,8 , and 16 .Determine the sum of the first ten terms of the G.P.(04 marks)
(b) An Arithmetic Progression (A.P) has a common difference of 3. A Geometric Progression (G.P) has a common ratio of 2. A sequence is formed by subtracting the terms of the A.P from the corresponding terms of the G.P. The third term of the sequence is 4 . The sixth term of the sequence is 79. Find the first term of the
(i) A.P.
(ii) G.P.
14. Evaluate:
(a) $\int_{0}^{\frac{\pi}{2}} \sin 5 x \cos 3 x d x$.
(b) $\int_{0}^{\frac{\sqrt{3}}{2}} \frac{d x}{9+4 x^{2}}$
(06 marks)
15. The line $y=m x+c$ is a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(a) Obtain an expression for c in terns of a, b, and m. (06 marks)
(b) Calculate the gradients of the tangents to the ellipse through the point $\left(\sqrt{\left(a^{2}+b^{2}\right)}, 0\right)$.
(06 marks)
16. The rate at which the temperature of a body falls is proportional to the difference between the temperature of the body and that of its surrounding. The temperature of the body is initially $60^{\circ} \mathrm{C}$. After 15 minutes the temperature of the body is $50^{\circ} \mathrm{C}$. The temperature of the surrounding is $10^{\circ} \mathrm{C}$.
(a) Form a differential equation for the temperature of the body.
(b) Determine the time it takes for the temperature of the body to reach $30^{\circ} \mathrm{C}$.
