UGANDA NATIONAL EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

PURE MATHEMATICS

Paper 1
3 hours

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section \mathbf{A} and any five from section \mathbf{B}.
Any additional question(s) answered will not be marked.
All necessary working must be shown clearly.
Begin each answer on a fresh sheet of paper.
Graph paper is provided.
Silent non programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A: (40 MARKS)

Answer all questions in this section.

1. The cocfficients of the first three terns of the expansion of $\left(1+\frac{x}{2}\right)^{n}$ arc in an Arithmetic Progression (AP). Find the valuc of n. (05 marks)
2. Solve the equation $3 \tan ^{2} \theta+2 \sec ^{2} \theta=2(5-3 \tan \theta)$ for $0^{\circ} \leq \theta \leq 180^{\circ}$. (05 marks)
3. Differentiate $\left(\frac{1+2 x}{1+x}\right)^{2}$ with respect to x.
(05 marks)
4. Solve for x in the equation $4^{2 x}-4^{x+1}+4=0$.
(05 marks)
5. The vertices of a triangle are $P(4,3), Q(6,4)$ and $R(5,8)$. Find angle $R P Q$ using vectors.
6. Show that $\int_{2}^{4} x \ln x d x=14 \ln 2-3$.
(05 marks)
7. The equation of a curve is given by $y^{2}-6 y+20 x+49=0$.
(a) Show that the curve is a parabola.
(03.marks)
(b) Find the coordinates of the vertex.
(02 marks)
8. A container is in the form of an inverted right circular cone. Its height is 100 cm and base radius is 40 cm . The containcr is full of water and has a small hole at its vertex. Water is flowing through the hole at a rate of $10 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Find the rate at which the water level ini the containcr is falling when the height of water in the container is halved.
(05 marks)

SECTION B: (60 MARKS)

Answer any five questions from this section. All guestions carry equal marks.
9. (a) Given that the complex number Z and its conjugate \bar{Z} satisfy the equation $Z \bar{Z}-2 Z+2 \bar{Z}=5-4 i$, find the possible values of Z.
(06 marks)
(b) Prove that if $\frac{Z-6 i}{z+8}$ is real, then the locus of the point representing the complex number Z is a straight line.
(06 marks)
10. A circle whose centre is in the first quadrant touches the x-and y-axes and the line $8 x-15 y=120$.
Find the:
(a) equation of the circle.
(b) . point at which the circle touches the x-axis.
(10 marks).
(02 marks)
11. A curve whose equation is $x^{2} y+y^{2}-3 x=3$ passes through points $A(1,2)$ and $B(-1,0)$. The tangent at A and the normal to the curve at B intersect at point C. Determine the:
(a) equation of the tangent.
$(06 \mathrm{marks})$
(b) coordinates of C.
(06 marks)
12. (a) Express $\cos \left(\theta+30^{\circ}\right)-\cos \left(\theta+48^{\circ}\right)$ in the form $R \sin P \sin Q$, where R is a constant. Hence solve the equation.

$$
\cos \left(\theta+30^{\circ}\right)-\cos \left(\theta+48^{\circ}\right)=0.2
$$

(06 marks)
(b) Prove that in any triangle $A B C ; \frac{\sin (A-B)}{\sin (A+B)}-\frac{a^{2}-b^{2}}{c^{2}}$. (06 marks)
13. (a) Solve for x and y in the following simultaneous equations.

$$
\begin{aligned}
& (x-4 y)^{2}=1 \\
& 3 x+8 y=11
\end{aligned}
$$

(06 marks)
(b) Find the set of values of x for which $4 x^{2}+2 x<-3 x+6$.
(06 marks)
14. (a) The points A and B have position vectors a and b, A point C with E position vector c lies on $A B$ such that $\frac{A C}{A B}=\lambda$.
Show that $\boldsymbol{c}=(1-\lambda) a+\lambda b$.
(04 marks)
(b) The vector equations of two lines are

$$
\begin{aligned}
& r_{1}=2 i+j+\lambda(i+j+2 k) \text { and } \\
& r_{2}=2 i+2 j+t k+\mu(i+2 j+k)
\end{aligned}
$$

where i, j and k are unit vectors and λ, μ and t are constants.
Given that the two lines intersect, find
(i) the value of t.
(ii) the coordinates of the point of intersection.
15. (a) Sketch the curve $y=x^{3}-8$.
(08 marks)
(b) The area enclosed by the curve in (a), the y-axis and the x-axis is rotated about the line $y=0$ through 360°. Determine the volume of the solid generated.
16. (a) Solve the differential equation

$$
\frac{d y}{d x}=(x y)^{2 / 2} \ln x, \text { given that } y=1 \text { when } x=1
$$

Hence find the value of y when $x=4$.

