PAPER 2
Nov. 1 Dec. 2016
3 hours

UGANDA NATIONAL EXAMINATIONS BOARD
 Uganda Advanced Certificate of Education

 APPLIED MATHEMATICS

 APPLIED MATHEMATICS}

Paper 2
3 hours

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section \mathbf{A} and five questions from section \mathbf{B}.
Any additional guestion(s) answered will not be marked.
All working must be shown clearly.
Begin each answer on a fresh sheet of paper.
Graph paper is provided.
Silent, non-programmable scientific calculaiors and mathematical tables with a list offormulae may be used.

In numerical work, take g to be $9.8 \mathrm{~ms}^{-2}$

SECTION A: (40 MARKS)

Answer all the questions in this section.

1. A ball is projected vertically upwards and it retums to its point of projection 3 seconds later. Find the :
(a) speed with which the ball was projected.
(b) greatest height reached.
2. The table below shows the values of two variables P and Q.

\boldsymbol{P}	14	15	25	20	15	7
\boldsymbol{Q}	30	25	20	18	15	22

Calculate the rank correlation coefficient between the two variables.
(05 marks)
3. Use the trapezium rule with 4 sub-intervals to estimate

$$
\int_{0}^{\frac{\pi}{2}} \cos x d x
$$

correct to three decimal places.
(05 marks)
4. A body of mass 4 kg is moving with an initial velocity of $5 \mathrm{~ms}^{-1}$ on a plane. The kinetic energy of the body is reduced by 16 Joules in a distance of 40 m . Find the deceleration of the body.
5. A continuous random variable X has a cumulative distribution function:
$F(x)= \begin{cases}0, & x \leq 0, \\ \lambda x^{3}, & 0 \leq x \leq 4, \\ 1, & x \geq 4 .\end{cases}$
Find the
(a) value of the constant λ.
(b) probability density function, $f(x)$.
6. The table below shows the values of $f(x)$ for given values of x.

x	0.4	0.6	0.8
$f(x)$	-0.9613	-0.5108	-0.2231

Use linear interpolation to determine $f^{-1}(-0.4308)$ correct to 2 decimal places. (05 marks)
7. A particle of mass 2 kg rests in limiting equilibrium on a rough plane inclined at 30° to the horizontal. Find the value of the coefficient of friction.
(05 marks)
8. A bag contains 5 Pepsi Cola and 4 Mirinda bottle tops. Three bottle tops are picked at random from the bag one after the other without replacement. Find the probability that the bottie tops picked are of the same type.
(0.5 marks)

SECTION B: (60 MARKS)
 Answer anty §ive questions from this section. All questions carry equal marks.

9. The data below shows the length in centimetres of different calendars produced by a printing press. A cumulative frequency distribution was formed.

Length (cm)	<20	<30	<35	<40	<50	<60
Cumulative frequency	4	20	32	42	48	50

(a) Construct a frequency distribution table.
(02 marks)
(b) Draw a histogram and use it to estimate the modal length.
(06 marks)
(c) Find the mean length of the calendars.
(04 marks)
10. Five forces of magnitudes $3 \mathrm{~N}, 4 \mathrm{~N}, 4 \mathrm{~N}, 3 \mathrm{~N}$ and 5 N act along the lines $A B, B C$, $C D, D A$ and $A C$ respectively, of a square $A B C D$ of side 1 m . The direction of the forces is given by the order of the letters. Taking $A B$ and $A D$ as refcrence axes; find the
(a) magnitude and direction of the resultant force.
(08 marks)
(b) point where the line of action of the resultant force cuts the side $A B$.
(04 marks)
11. Given the equation $x^{3}-6 x^{2}+9 x+2=0$;
(a) show that the equation has a root between -1 and 0 . (03 marks)
(b) (i) show that the Newton Raphson formula for approximating the root of the equation is given by
$x_{n+1}=\frac{2}{3}\left[\frac{x_{n}^{3}-3 x_{n}^{2}-1}{x_{n}^{2}-4 x_{n}+3}\right]$.
(04 marks)
(ii) use the formula in $b(i)$ above, with an initial approximation of $x_{0}=-0.5$, to find the root of the given equation correct to two decimal places.
(05 marks)
12. A newspaper vendor buys 12 copies of a sports magazine every week. The probability distribution for the number of copies soid in a week is given in the table below.

Number of copies sold	9	10	11	12
Probability	0.2	0.35	0.30	0.15

(a) Estimate the
(i) expected number of copies that she selis in a week.
(ii) variance of the number of copies sold in a week.
(05 marks)
(b) The vendor buys the magazine at Shs 1,200 and sells it at Shsl,500. Any copies not sold are destroyed. Construct a probability distribution table for the vendor's weekly profit from the sales.
Hence calculate her mean weekly profit.
(07 marks)
13. A particle starts from rest at a point $(2,0,0)$ and moves such that its acceleration at any time $t>0$ is given by

$$
a=[16 \cos 4 t i+8 \sin 2 t j+(\sin t-2 \sin 2 t) k] \mathrm{ms}^{-2}
$$

Find the:
(a) speed when $t=\frac{\pi}{4}$.
(b) distance from the origin when $t=\frac{\pi}{4}$.
(06 marks)
14. The numbers x and y are approximated by X and Y with errors Δx and Δy respectively.
(a) Show that the maximum relative error in $x y$ is given by

$$
\left|\frac{\Delta x}{X}\right|+\left|\frac{\Delta y}{Y}\right| .
$$

(05 marks)
(b) If $x=4.95$ and $y=2.013$ are each rounded off to the giver number of decimal places, calculate the -
(i) percentage error in $x y$,
(ii) limits within which $x y$ is expected to lic. Give your answer to three decimal places.
15. The drying time of a newly manufactured paint is normally distributed with mean 110.5 minutes and standard deviation 12 minutes.
(a) Find the probability that the paint dries between 104 and 109 minutes.
(06 marks)
(b) If a random sample of 20 tins of the paint was taken, find the probability that the mean drying time of the sample is between 108 and 112 minutes.
(06 marks)
16. A particle of mass 2 kg moving with Simple Harmonic Motion (SHM) along the x-axis, is attracted towards the origin O by a force of $32 x$ Newtons. Initially the particle is at rest at $x=20$. Find the
(a) amplitude and period of the oscillation. . (05 marks)
(b) velocity of the particle at any time, $t>0$. (05 marks)
(c) speed when $t=\frac{\pi}{4} s$.

