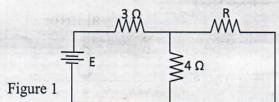
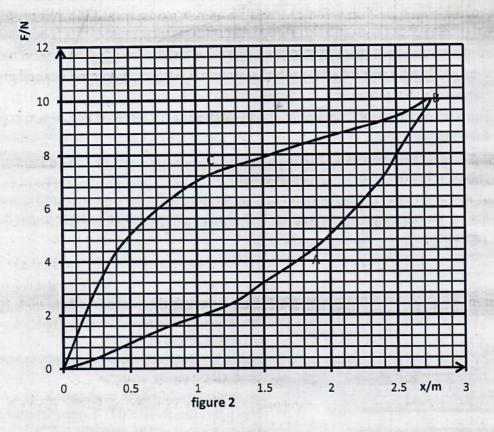


GCE A - LEVEL


PHYSICS 2007

JUNE 2007

1. The speed of light, c is related to the permeability μ_o and the permittivity, ϵ_o by the expression


$$c = \frac{1}{\sqrt{\mu_o \epsilon_o}}$$

- i. Show that this equation is homogeneous
- ii. Calculate the magnitude of ε_0
- 2. In figure 1 below, the current in the 3 Ω resistor and R are 1.5 A and 0.5 A respectively.

Calculate

- i. The emf of the battery
- ii. The resistance of R
- 3. (i) Explain why it is preferable to describe elastic behavior of materials in terms of stress strain rather than force extension.
 - (ii) Figure 2 is a graph of the extension and contraction of a rubber band. Calculate the work done in this process.

- 4. A drill using a current of 1.5 A when connected to a mains supply of 240 V makes a round hole in a piece of iron of mass M. in one minute 75 % of the electrical energy is converted to internal energy of the iron which cause a rise in temperature of 20°C. if the specific heat capacity of iron is 460 Jkg⁻¹K⁻¹
 - i. Calculate the mass M of the piece of iron
- (ii)State any assumption

- 5. (a) sketch
 - i. The transfer (ii) The input (iii) The output Characteristic for an npn transistor.
- 6. Figure 3 shows the path a ray of light would follow in an optical fibre whose core has a refractive index n₁ and the cladding has refractive index n₂

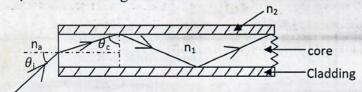
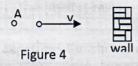
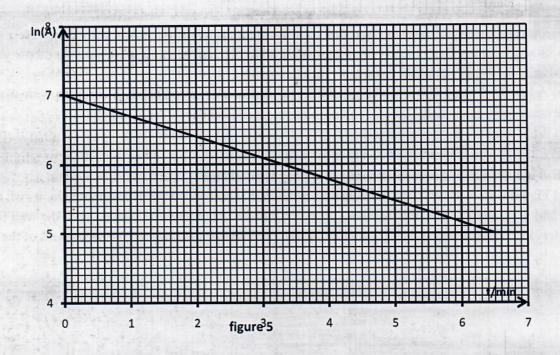



Figure 3

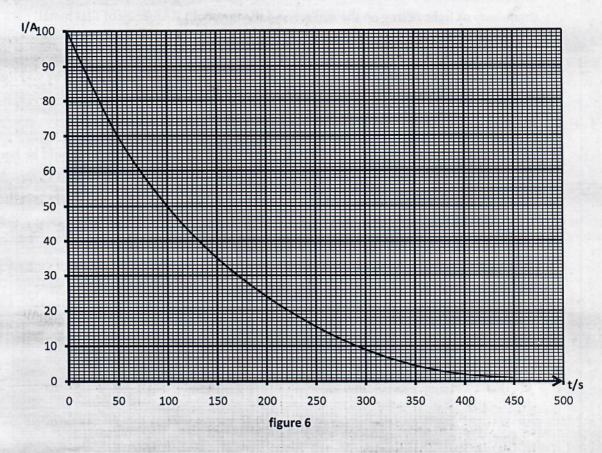
The angle of incidence and the critical angles are respectively θ_i and θ_c

- i. What is meant by critical angle?
- ii. State and explain whether n_1 is less than or greater than n_2
- iii. The refractive index for glass is 1.5, calculate θ_c
- 7. The mercury in glass thermometer and the constant volume gas thermometer can be used to measure temperature.
 - i. Explain why the constant volume gas thermometer could give readings in degree Celsius and mercury in glass thermometer in degree Celsius too.

- The two thermometers may give different readings when immersed in a volume of liquid. Explain ii. why?
- 8. (a) Describe an experiment to show that for a constant force, the mass of a body is inversely proportional to its acceleration. State clearly how you would minimize errors in measurements and how you would arrive at the required results from your measurements
 - (b) A ball X of mass 400 g travelling at 2.5 ms⁻¹ makes elastic and head on collision with a second identical, stationary ball Y. they remain in physical contact for 60 µs.
 - (i) What does elastic collision mean?
 - (ii) Calculate the velocities of X and Y after the collision
 - (iii) Find the average force exerted by X during the collision.
 - (c) Figure 4 shows a ball propelled from a point A. the ball moves with constant velocity of, hits a wall a B and moves back to A with the same velocity. The ball is in physical contact with the wall for a time interval Δt . Sketch a graph of the momentum of the ball against time for the movement of the ball.



- (d) Describe how you would measure the specific heat capacity of a liquid. Describe the procedure you would use to make allowance for heat losses, and how you would derive the specific heat capacity from you measurements.
- (e) The kinetic theory of ideal gases leads to the equation


$$P = \frac{1}{3}\rho \overline{c^2}$$

Where P is the pressure, ρ is the density and $\overline{c^2}$ is the mean square speed of the molecules.

- (i) State the assumptions used to derive this result.
- (ii) Hence derive the equation
- 9. (a) A radioactive source emits both alpha and beta radiations.
 - (i) What does it mean for a substance to be radioactive?
 - (ii) State and explain how you would distinguish between the two types of radiations
 - (b) figure 5 shows a graph of the natural logarithm of the activity of a radioactive element plotted against time in minutes. Sketch the set – up from which such results would have been obtained.

- (c) (i) Use the graph to obtain a value for the half life of the sample
- (ii) Use the graph to calculate the initial activity of the sample
- (ii) In what ways is a capacitor? (d) (i) What is a capacitor?
- (a) Similar to (b) Different from a diode.
- (e) A capacitor, charged fully with a battery of 10 V is discharged through a resistor. Figure 6 shoows how the current varies with time.

- (i) Sketch an electric circuit from which such results would have been obtained
- (ii) Use the graph to estimate the initial charge on the capacitor and hence, or otherwise, estimate its capacitance.
- (iii) Calculate the time constant for the capacitor.
- (f) How will the graph be affected if the resistance R in the circuit is doubled? Explain your answer.
- 10. (a) Explain what is meant by the terms:
 - (i) Displacement,
 - (ii) Wave speed for a mechanical wave
 - (b) Distinguish clearly between stationary wave and progressive wave with reference to the following characteristics of the wave
 - (i) Amplitude (ii) Frequency (iii) Wavelength (iv) phase (v) wave form (vi) Energy transmitted Diffraction and interference are phenomena exhibited by wave. State clearly the difference between these phenomena
 - (c) A laser is used to produce young fringes with slits separated by 0.05 mm. The screen is 1.0 m from the slits and 10 fringe separations occupy 12.5 mm. What is the wavelength of the laser light?
 - (d) Electrons can be emitted from the surface of zinc by ultraviolet light.
 - (i) Explain why visible light cannot cause electrons to be emitted from the surface of zinc whereas ultraviolet light does?
 - (ii) If both metals were illuminated with ultraviolet light of the same frequency, how will the energies of electrons emitted from the zinc and potassium surfaces differ?
 - (e) Explain each of the following

CHI EMMANUEL

(i) If the intensity of the ultraviolet light directed at a piece of zinc is doubled, the number of electrons leaving the surface per second also doubles but the maximum kinetic energy is unchanged.

- (ii) The maximum kinetic energy of photoelectrons is directly proportional to the difference between the frequency of light falling on the surface and the threshold frequency of that metal.
- (iii) Gamma photons are more harmful to people than infrared photons.
- (f) Calculate the wavelength of photons emitted when an electron makes a quantum jump from n = 3 state to the ground state of the hydrogen atom. The energy at the state n = 3 is -1.5 ev and the ground state energy is - 13.6 eV.