

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL General Certificate of Education Advanced Level

METAL TECHNOLOGY AND DESIGN

PAPER 1 THEORY DRAWING AND DESIGN

SPECIMEN PAPER

3 hours

6040/1

Additional materials: Answer paper, A2 drawing paper, Standard drawing equipment, Scientific calculator.

TIME: 3 hours

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces provided on the answer paper/answer booklet.

Answer **all** questions in Section **A** on separate answer paper provided.

For numerical answers, all working should be shown.

Answer questions 5 and 6 on A2 drawing papers provided.

INFORMATION FOR CANDIDATES

Marks are given in brackets [] at the end of each question or part question.

Dimensions not shown are left to your discretion.

This question paper consists of 5 printed pages and 3 blank pages.

Copyright: Zimbabwe School Examinations Council, Specimen Paper.

©ZIMSEC SPECIMEN PAPER

[Turn over

Section A

Answer all questions.

- 1 (a) Define the following terms in relation to material properties:
 - (i) elasticity,
 - (ii) plasticity,
 - (iii) ductility,

2

- (iv) tensile strength.
- (b) Fig. 1 below shows a tool used in a workshop.

	(i) Suggest the material that can be used to make the tool.		[1]
	(ii) Give a reason for your suggestion.		[1]
	(iii)	Give a reason why part B of the tool is not hardened and tempered.	[1]
(a)	Give	e one reason why doping is done in electronics.	
(b)	Name any two elements which form interstitial solid solution.		[2]
(c)	With the aid of a diagram explain the structure of an interstitial solid solution.		[4]

- 3 (a) Sketch a graph to show the relationship between stress and strain and indicate the yielding point.
 - (b) Consider a tie bar of 300 cm long, 8 cm wide and 16 cm high as shown in Fig. 2. It is subjected to a pulling force of 4 000 kN. As a result a Change in length of material is 2,5 cm.

	Calculate the Young modulus of elasticity of the material.	[4]
(a)	Identify one type of manufacturing system that can be used in the production of goods in the metal industry.	[1]
(b)	Explain the purpose of the manufacturing system stated in 4(a) above.	[1]
(c)	Give one advantage and one disadvantage of the manufacturing system discussed in 4(a) above.	
(d)	State any three factors that may be considered when adding value to a manufactured product of your choice.	[3]

6040/1 SPECIMEN PAPER

4

[3]

Section B

Answer question 5 on the A2 drawing paper provided.

You are advised to spend not more than 1 hour 20 minutes on this section.

5 A Farm School has introduced Metal Technology and Design at 'A' level. The school has critical shortage of tools to use during practical lessons in the workshop.

As a Metal Technology and Design learner you are required to design a suitable combination tool/device that can be used for holding cylindrical work and marking out lines parallel to an edge.

(a)	State any two additional specifications.	[2]
(b)	Generate two possible solutions.	[10]
(c)	Analyse the two possible solutions.	[8]
(d)	Choose one solution and justify your choice.	[8]
(e)	Produce sketches of working drawings of the chosen solution.	[8]
(f)	Propose two specific materials that can be used to make the solution and justify your choice.	
(g)	Select any one part of the solution and explain how it can be produced in a workshop.	[5] [40]

Section C (32 marks)

Answer question 6 on the A2 drawing paper provided.

You are advised to spend not more than 1 hour on this section.

6 The best pulley unit shown in **Fig. 3** consists of a mounting bracket (1), a belt pulley (2), a fitted bolt (3) and two bushes (4).

Draw twice **full size**, in first angle projection with all parts assembled.

(a)	A sectional front view on YY .	[20]
(b)	End view in the direction of arrow A .	[12] [32]

BLANK PAGE

6040/1 SPECIMEN PAPER

BLANK PAGE

6040/1 SPECIMEN PAPER

BLANK PAGE

6040/1 SPECIMEN PAPER