

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Advanced Level

CHEMISTRY 6031/4

PAPER 4 Practical Test

SPECIMEN PAPER

2 hour 30 minutes

Candidates answer on the question paper. Additional materials: As listed in Instructions to Supervisors

Electronic calculator

TIME 2 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

You are advised to show all working in calculations.

Use of a Data Booklet is unnecessary.

Qualitative analysis notes are printed on pages 10 and 11.

FOR EXAMINER'S USE	
1	
2	
3	
TOTAL	

This question paper consists of 11 printed pages and 1 blank page.

Copyright: Zimbabwe School Examinations Council, Specimen paper.

©ZIMSEC [Turn over

- You are required to estimate the percentage composition of iron (II) ions in a brown contraceptive pill. The major component of the pill is, ferrous fumarate, $C_4H_2FeO_4$.
 - **FA1** are three reddish brown contraceptive pills.
 - **FA2** is a 0.001 moldm⁻³ KMnO_{4 (aq)}.
 - (a) Weigh an empty small beaker.

Place **FA1** (the three pills) in the small beaker and weigh again.

Record your weighings in **Table 1.1**.

Table 1.1

mass of small beaker $+ \mathbf{FA1/g}$	
mass of empty small beaker / g	
mass of FA1 used /g	

[2]

Crush the three pills using mortar and pestle.

Transfer all the powder into the small beaker.

Using a measuring cylinder add 15 cm³ of hot 1.0 moldm⁻³sulphuric acid to the crushed pills in the small beaker and stir vigorously with a glass rod.

Transfer all the contents of the beaker into a 250 cm³ volumetric flask. Make up to the mark with distilled water.

Mix the contents thoroughly by shaking and label this solution **FA3.**

(b) Filter **FA3** into a clean beaker

Pipette 25.00 cm³ of the filtered **FA3** into a conical flask and add 10.00 cm³ of 1.0 moldm⁻³sulphuric acid.

Titrate the contents of the conical flask with **FA2**.

Repeat the titration as many times as you think necessary to obtain accurate results.

5]

1 (b) Record your burette readings in **Table 1.2.**

Table 1.2:

final burette reading / cm ³			
initial burette reading/cm ³			
volume of FA2 used / cm ³			[1

Summary

25.00	cm ³ of FA3 reacted with	$_{\rm cm}^{\rm 3}$ of FA2 .
-------	--	-------------------------------------

Show which results you used to obtain this volume of **FA2** by placing a tick under the readings in **Table 1.2.**

In acidic conditions, MnO_4^- and Fe^{2+} ions react according to the following half equations:

$$MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5e^{-} \longrightarrow Mn_{(aq)}^{2+} + 4H_{2}O_{(l)}$$

$$Fe_{(aq)}^{3+} + e^{-} \longrightarrow Fe_{(aq)}^{2+}$$

(c) Write a balanced equation for the reaction between Fe^{2+} and MnO_4^- .

(d) Calculate the number of moles of $MnO_{4(aq)}^{-}$ in the volume of **FA2** which reacted with 25 cm³ of **FA3**.

[1]

[1]

1 (e) Calculate the number of moles of $Fe_{(aq)}^{2+}$ in 25.00 cm³ of **FA3.**

[1]

(f) Determine the mass of Fe²⁺ in the brown contraceptive pill.

$$\oint A_r(Fe):55.8$$

[2]

(g) Estimate the percentage composition of iron in the brown contraceptive pill.

[1]

(h) Given that the structural formulae of ferrous fumarate is

$$\begin{bmatrix} O & H & H & O \\ & & & & \\ -O & C & = C - C & O \end{bmatrix} \bullet Fe^2$$

Suggest why the value of the percentage composition of iron determined in the experiment is much higher than the actual value.

1	(i)	Describe and explain how the end point is observed in this analysis.	For Examiner's Use
		[2] [Total:20]	

6031/4 Specimen paper

ASSESSMENT OF PLANNING SKILLS

DO NOT CARRY OUT YOUR PLAN.

2 Sodium is a very reactive metal which is stored under oil to prevent contact with air and water vapour.

The reaction of sodium with water can be represented by the equation,

$$2 \text{ Na}_{(s)} + 2 \text{ H}_2 \text{O}_{(l)} \longrightarrow 2 \text{ NaOH}_{(aq)} + \text{H}_{2(g)}$$
.

You are required to determine the A_r of sodium using a given sample of sodium metal basing on the above reaction.

Present your plan as a sequence of numbered steps and draw a diagram showing the set up of the experiment. Your plan should show how you would use your results to determine the $A_{\rm r}$ of sodium.

Assume you are provided with the following:

a piece of sodium metal water thistle funnel absorbent paper rubber stopper delivery tube measuring cylinder beaker

[molar gas volume, V_m , = 24 dm³ mol⁻¹ at r.t.p.]

The plan

[Total :10]

3 FA1 is a solution containing **one** cation and **two** anions.

You are required to identify the ions in **FA1** by carrying out the tests described in the table.

In all the tests, the reagents should be added gradually until no further change is observed, with shaking after each addition. Take a portion of **FA1** to be about 2 cm³.

Record your observations and deductions in the spaces provided.

Your answers should include,

- (i) details of colour changes and precipitates formed,
- (ii) the names of gases evolved and details of the test used to identify each one.

You should indicate clearly at what stage in a test a change occurs writing any deductions you may make alongside the observation on which they are based.

	test	observations [13]	deductions [8]
(a)	Describe the appearance of FA1.		
(b)	To a portion of FA1 , add NaOH _(aq) until in excess and then heat		
(c)	To a portion of FA1 , add NH _{3(aq)} until in excess.		

Ī	For Examiner	¹a
	Use	3

To a portion of FA1 , add BaC $l_{2(aq)}$		
followed by dilute HC <i>l</i>		
To a portion of FA1 , add Pb (NO ₃) _(aq) .		
To a portion of FA1 , add dilute HC <i>l</i> .		
To a portion of FA1 , add dilute HNO ₃		
followed by AgNO _{3(aq).}		
Summary: cation		
anions	and	[: [Total: 20]

QUALITATIVE ANALYSIS NOTES

[Key ppt = precipitate]

1 Reactions of aqueous cations

	reaction	n with
	NaOH (aq)	NH ₃ (aq)
aluminium,	white ppt.	white ppt.
A <i>l</i> ³⁺ (aq)	soluble in excess	insoluble in excess
ammonium,	ammonia produced on heating	
NH ₄ +(aq)		
barium,	no ppt. (if reagents are pure)	no ppt.
Ba ²⁺ (aq)		
calcium,	white ppt. with high [Ca2+ (aq)]	no ppt.
Ca ²⁺ (aq)		
chromium(III),	grey-green ppt. soluble in excess	grey-green ppt.
Cr ³⁺ (aq)	giving dark green solution	insoluble in excess
copper(II),	pale blue ppt.	blue ppt. soluble in excess
Cu ²⁺ (aq)	insoluble in excess	giving dark blue solution
iron(II),	green ppt.	green ppt.
Fe ²⁺ (aq)	insoluble in excess	insoluble in excess
iron(III),	red-brown ppt.	red-brown ppt.
Fe³+(aq)	insoluble in excess	insoluble in excess
lead(II),	white ppt.	white ppt.
Pb ²⁺ (aq)	soluble in excess	insoluble in excess
magnesium,	white ppt.	white ppt.
Mg²+(aq)	insoluble in excess	insoluble in excess
manganese(II),	off-white ppt.	off-white ppt.
Mn²+(aq)	insoluble in excess	insoluble in excess
zinc,	white ppt.	white ppt.
Zn²+(aq)	soluble in excess	soluble in excess

 $[Lead ({\rm II})\ ions\ can\ be\ distinguished\ from\ aluminium\ ions\ by\ the\ insolubility\ of\ lead ({\rm II})\ chloride.]$

100	<i>(</i> 1111111111111
0000 0000 00 9000	00000 00000000000000000000000000000000
	001200 00000 000000000000000000000000000
0 440000	
	0 DX 0 0 0 0 0 0 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	0 0>40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10000 2 000	
	$m{\omega}_0$. The composition of
	20 00000000000000000000000000000000000
	ooxsoco cance>++++++++++++++++++++++++++++++++++++
000 %100	a ₀ ₀ ₀ o o o o o o o o o o o o o o o o

ООО	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	000000000 200 00 0 0 0 0 0 0 0

12

BLANK PAGE