

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL General Certificate of Education Ordinary Level

STATISTICS PAPER 2

SPECIMEN PAPER

2 hours 30 minutes

4073/2

Additional materials: Answer paper Electronic calculator

Mathematical Set

Allow candidates 5 minutes to count pages before the examination.

TIME 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of the answer paper or answer booklet.

Write your centre and candidate number in the boxes on the top right corner of every page of this paper.

Check if the booklet has all the pages and ask the invigilator for a replacement if there are duplicate or missing pages.

Answer all questions in Section A and any four questions in Section B.

Omission of essential working will result in loss of marks.

Decimal answers which are not exact should be given to three significant figures unless stated otherwise.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question.

This question paper consists of 7 printed pages and 1 blank page.

Copyright: Zimbabwe School Examinations Council, Specimen Paper.

©ZIMSEC Specimen Paper

[Turn over

Section A [36 marks]

Answer all questions in this section.

1	(a)	(a) Distinguish between descriptive statistics and inferential statistics.						
	(b) State any two uses of statistics in life.							
2	(a)	Defin	e the following terms as they are used in Statistics.					
		(i)	Population	[1]				
		(ii)	Sample	[1]				
		(iii)	Census	[1]				
	(b)	State for da	[2]					

3 Table 3.1 shows the probability distribution for a random variable X.

	Ta	ble	3.1
--	----	-----	-----

X	1	2	3	4	5
$\mathbf{P}(\mathbf{X}=\mathbf{x})$	k	$\frac{1}{4}$	2 k	$\frac{1}{3}$	$\frac{2}{5}$

Calculate,

(a)	the value of k ,	[]	[]
-----	--------------------	----	----

(b) $P(2 \le X < 4),$ [2]

(c)
$$E(X)$$
. [2]

4 The probability that Tom is early for school is $\frac{2}{3}$ and that John is late for school is $\frac{3}{5}$.

Giving each answer as a common fraction in its lowest terms, find the probability that on a given day,

(a)	Tom is late for school,					
(b)	they a	are both early,	[2]			
(c)	either	Tom or John is late for school.	[2]			
(a)	State	any two measurement scales and give an example of each	[4]			
(<i>a</i>)	State any two measurement scales and give an example of each.					
(b)	(i)	Define the term sampling.	[2]			
	(ii)	State any one technique of data collection, giving any one advantage and any one disadvantage.	[3]			
	(iii)	State any two reasons why sampling is important.	[2]			

6 A sports equipment company sells three types of tennis shoes (Trainer, Balance and Dura), as shown in **Table 6.1.**

Table 6.1

5

Shoe Type	2005	2006	Value	
	Price (\$)	Price (\$)	Weights	
Trainer	32	90	10	
Balance	44	23	15	
Dura	56	54	12	

- (a) Using 2005 as the base year, calculate the price relatives for
 - (i)Trainer[1](ii)Balance[1]
 - (iii) Dura [1]
- (b) Calculate the weighted aggregate cost index. [3]

Section B (64 marks)

Answer any four questions

7 **Table 7.1.** shows the lengths of 30 leaves.

Table 7.1

Length of leaf (cm)	10 - 14	15 – 19	20-24	25 – 29	30 - 39
Frequency	3	8	11	6	2

(a) Calculate, correct to 2 decimal places, the

(i)	mean length,	[3]
(ii)	standard deviation	[4]
(iii)	median.	[3]
(i)	Draw a histogram to illustrate the data in Table 7.1 .	[4]

- (ii) Use the histogram to estimate the mode. [2]
- 8 **Table 8.1** gives information about two districts **X** and **Y**.

Table 8.1

(b)

	District X	ζ.	District Y					
Age group	Deaths	Population	Standard Population %	Death rate	Standard Population %			
0 - 19	150	80 000	25	4	25			
20 - 39	а	60 000	30	3	30			
40 -59	200	50 000	25	5	25			
60+	160	60 000	20	25	20			

(a) Given that the death rate for the 20 - 39 age group is 3 per thousand for district X, find the value of a.

8	(b)	Calculate the crude death rate for district X.					
	(c)	c) (i)	For district X , calculate the death rates for the age groups.				
			1.	0 – 19			
			2.	40 – 59			
			3.	60+	[3]		
		(ii)	Calc	ulate the standard death rate for district X ,	[3]		
		(iii)	Calc	ulate the standard death rate for district Y ,	[2]		
	(d)	Com	nent, g	giving a possible reason, on your results in c(ii) and (iii).	[2]		

9 Table 9.1 shows the marks obtained by 10 students in Mathematics and Statistics tests.

T -	1.1.	•	1
1 a	ble	<u> </u>	.1

Mathematics (X)	50	67	42	80	50	40	97	81	70	75
Statistics (Y)	55	70	59	70	38	55	62	80	76	70

(a)	Using a scale of 2 cm to represent 10 marks on both axes, plot a scatter diagram for the information in Table 9.1 .				
(b)	(i)	Calculate \overline{x} and \overline{y}	[2]		
	(ii)	Calculate the semi averages	[4]		
	(iii)	Plot the points on the graph.	[1]		
	(iv)	Draw the line of best fit on the graph.	[1]		

	(c)	The line of best fit is defined by the equation $y = mx + c$.					
		(i)	Use your graph to find the value of				
			1. <i>m</i> , correct to 2 decimal places,	[2]			
			2. <i>c</i> , to the nearest whole number.	[1]			
9	(c)	(ii)	Write down the equation of the line of best fit.	[1]			
	(d)	Use the line of best fit to estimate the Statistics mark, if the student scored 64 in Mathematics.					

10 (a) Table 10.1 shows the sales in thousands of dollars of a wholesale for four successive years.

	Table 10.	1			
	Year				
	2000	2001	2002	2003	
1 st quarter	20	18	21	20	
2 nd quarter	24	30	28	32	
3 rd quarter	50	60	62	65	
4 th quarter	25	27	28	30	

(i) Using a scale of 2 cm to represent 2 quarters on the horizontal axis and 2 cm to represent \$10 000 on the vertical axis, draw a time series graph.

[4]

(ii) Calculate the

1. 4 point moving averages,	[2]
-----------------------------	-----

- 2. centred moving averages. [3]
- (iii) Plot the centred moving averages on the graph. [2]
- (iv) Draw the trend line on the graph. [1]
- (v) Comment on the two graphs in (iii) and (iv). [2]
- (b) Explain why it is necessary to calculate centred moving averages. [2]

Table 11.1 shows the frequency distribution of the ages of 56 people in a village.

Table	11	.1
-------	----	----

Age (years)	10 - 19	20 - 29	30 - 39	40 - 49	50 - 59	60 - 69	70 - 79	
Frequency	3	4	8	18	17	4	2	
(a)	(a) (i) Construct a cumulative frequency table.						[2]	
	(ii) U a a	Using a scale of 2 cm to represent 10 years on the horizontal axis and 2 cm to represent 5 people on the vertical axis, draw a cumulative frequency curve.						[5]
(b)	Use the o	e the curve to estimate the						
	(i) number of people who are less than 57 years,					[1]		
	(ii) number of people who are more than 61 years,					[2]		
	(iii) n	nedian,						[2]
	(iv) in	nterquartile	e range.					[4]

8 BLANK PAGE