ndidate Name	Centre Numbe	er Candidate Nur
ZIMBABWE SCH	For Performance Measurement TOOL EXAMINATION Certificate of Education Ordinary L	ONS COUNCI
CHEMISTRY		4024/2
PAPER 2 Theory		
SP	ECIMEN PAPER	2 hours
Additional materials: Electronic calcula	tor	
TIME 2 hours		
INSTRUCTIONS TO CANDII	DATES	
Write your name, Centre number	and candidate number in the spa	aces at the top of this pa
Section A		
Answer all questions.		
Write your answers in the spaces	provided on the question paper.	
Section B		
Answer any four questions.	te answer naner provided	
At the end of the examination fas paper.	sten any separate answer paper u	sed securely to the ques
INFORMATION FOR CAND	IDATES	
The number of marks is given in bracke	ets [] at the end of each question or par	t question paper.
A copy of the periodic table is or	n page 17.	
This quest	on paper consists of 17 printed	l pages.
Copyright: Zimba	uwe School Examinations Council, Sp	eennen paper.

Section A

2

Answer **all** the questions in the spaces provided.

(a) A student prepared a blue solution, **P**, by adding black copper (II) oxide powder to nitric acid as shown in **Fig.1.1**.

1

Fig.1.1

(i) Name two chemical substances in the blue solution.
1.
2.
(ii) State two observations made by the student.
1.
2.
(iii) Write a balanced chemical equation for the reaction.

[6]

1 (b) Write a balanced chemical equation for the reaction that will occur when

- (i) zinc granules are added to copper sulphate solution,
- (ii) calcium carbonate is heated strongly.

[2] [Total:8]

2 (a) In a titration, 25 cm³ of aqueous ammonia required 21.50 cm³ of 0.1 mol dm⁻³ sulphuric acid for complete neutralisation. The equation for the reaction is:

 $H_2SO_{4(aq)} + 2NH_4OH_{(aq)} \rightarrow (NH_4)_2SO_{4(aq)} + 2H_2O_{(aq)}$

- (i) Calculate the number of moles of sulphuric acid in 21.50 cm^3 of the solution.
- (ii) Deduce the number of moles of ammonia in the 25 cm³ of ammonia.

(iii) Calculate the concentration of the ammonia solution.

[6]

- (b) (i) Give one physical property in which the oxides, CO_2 and SO_2 , are similar.
 - (ii) Name the industrial process by which $CO_{2(g)}$ is obtained from air.

[2] [Total :8]

3 (a) Table. 3.1 shows some of the gaseous pollutants.

Complete **Table 3.1** by stating a use and an effect of the gases on the environment.

gas	use	effect on the environment
CO ₂		
SO ₂		

[4]

- 3 (b) Explain why no chemical reaction takes place when
 - (i) aluminium powder that has been exposed to air is added to a solution of iron (II) sulphate,
 - (ii) magnesium powder is added to a solution of calcium chloride,
 - (iii) zinc oxide is heated in a stream of hydrogen,
 - (iv) carbon dioxide is bubbled through a solution of hydrochloric acid.

[4] [Total:8] 4 (a) Fig.4.1 shows how an organic compound, Q is produced from ethene.

- 7
- (iv) Describe anyone chemical test that is used to distinguish ethene from **P**.

(b) Fig.4.2 shows the structure of a protein molecule.

Fig.4.2

- (i) Name the smaller units (monomers) that make up the protein molecule.
- (ii) Describe how the protein molecule can be broken down into the smaller units.

[2] [Total:8]

[6]

4024/2 Specimen paper

[Turnover

5 Fig.5.1 shows a set up of apparatus that was used to identify a blue pen that was used to write a bad message by a student. The ink that was used to write the message is marked M. Sample inks 1,2 and 3 were taken from pens suspected to have been used.

- (a) (i) State the number of dyes in ink M.
 - (ii) Describe **one** difference and **one** similarity between inks in samples 1 and 3.

[3]

8

	(iii)	Identify with reasons the sample ink that could have been used to write the bad message.	
		ink	
		reason	[4]
(b)	(i)	Name one property that determines the distance travelled by a dye in chromatography.	
	(i)	The solvent travelled 8.0 cm and the dye in ink 3 travelled 3.0 cm.	
		Calculate the $R_{\rm f}$ value of the dye in ink 3.	
	(iii)	State the importance of R _f values.	
			[3]
(c)	Expla	ain why the container in Fig.5.1 was covered.	

[1] [Total: 8]

Section: B

Answer any four questions from this section.

(a) Define the term *ionic bonding*.

6

[2]

(b) The table shows some physical properties of three compounds.

compound	electrical conductivity	melting point
naphthalene	does not conduct	low
copper (II) chloride	good conduction when in solution	high
ethane	does not conduct	low

- (i) Explain why
 - 1. copper (II) chloride has a higher melting point than ethane,
 - 2. naphthalene does not conduct electricity
- (ii) Describe and explain what happens when
 - 1. solid naphthalene is added to water,
 - 2. an electric current is passed through a concentrated solution of copper (II) chloride.

[9]

- (c) Element X has 9 protons and 10 neutrons.
 - (i) Draw a diagram to show the full electronic structure of X.
 - (ii) State two physical properties of the compound formed when X reacts with sodium.

[Total:15]

- 7 (a) Cast iron from the blast furnace contains 4 to 5 % carbon and other impurities.
 - (i) Name one other impurity in cast iron.
 - (ii) Describe how the impurities are removed in the oxygen lance furnace.

[3]

(b) The structural formulae of butenedioic acid is shown in Fig. 7.1.

Fig. 7.1

- (i) Give the empirical formulae of butenedioic acid
- (ii) Describe how butenedioic acid reacts with
 - 1. aqueous bromine,
 - 2. sodium carbonate,
 - 3. magnesium.
- (iii) Draw the structural formula of the product formed when butenedioic acid reacts with bromine.

[5]

(c) Fig.7.2 shows the reaction of ethene molecules to produce N.

- (i) Name
 - 1. this type of reaction,
 - 2. product N.
- (ii) Draw the displayed structural formula of N.
- (iii) State any two uses of the product N
- (iv) Describe how product N can be safely disposed from the environment

[7] [Total:15] (a) Describe how a pure sample of sodium chloride can be prepared fromsolutions of hydrochloric acid and sodium hydroxide of known concentrations.

8

13

[4]

(b) Fig.8.1 shows chemical tests carried out on a salt to identify the ions present in the salt.

Fig.8.1

- (i) Deduce the cations and anions in the salt.
- (ii) Iodide ions were suspected to be present in the salt.

Describe a chemical test and observations to show the presence of the iodide ions.

[7]

(c) A student placed a few calcium granules in a flask containing cold water coloured with universal indicator. The gas given off was collected in a measuring cylinder inverted in water as shown in **Fig. 8.2**

Fig. 8.2

- (i) State and explain any **one** observable change that occurs in the flask.
- (ii) Name the gas produced.
- (iii) Describe a test for the gas produced.

[4] [Total:15]

4024/2 Specimen paper

9 Fig.9 shows the main steps in the manufacture of sulphuric acid.

- (a) (i) Choose from the letters A E, the box that would be labelled
 - 1. catalytic converter,
 - 2. chimney,
 - 3. purifier
 - (ii) Identify **one** error on the flow diagram and describe how this can be corrected.
 - (iii) State any **one** condition used in **C** and write the overall equation for the reaction which takes place.

[12]

(b) Describe how sulphuric acid is converted into ammonium sulphate fertilizer.

[3] [Total:15]

[Turnover

(a)	State					
	(i)	(i) two different physical properties of bromine and iodine,				
	(ii) two similar chemical chemical properties of bromin and iodine.					
	(iii)	any two uses of chlorine.	[6]			
(b)	b) Chlorine reacts with potassium bromide as shown.					
		$2\text{KBr}_{(\text{aq})} + \text{C}l_{2(g)} \rightarrow 2\text{KC}l_{(\text{aq})} + \text{Br}_{2(g)}$				
	(i)	State one observation made as the reaction occurs.				
	(iii)	Name, with a reason, this type of reaction.	[4]			
(c)	Explai	n why				
	(i)	incineration is a controversial method of waste disposal				

(ii) the use of landfills as method of waste disposal is being discouraged.

[5] [Total: 15]

10

- (I)

Group																	
I	11											Ш	IV	V	VI	VII	0
1 H Hydrogen															4 He Helium		
7 Li Lithium 3	9 Be Beryllium									11 B Boron 5	12 C Carbon	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon		
23 Na ^{Sodium}	24 Mg Magnesium 12		27 28 31 32 35,5 AI Si P S CI Aluminium Silicon Phosphorus Sulphur Chorine 13 14 15 16 17 18										40 Ar Argon 18				
39 K Potassium 19	40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni ^{Nickel} 28	64 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromide 35	84 Kr Krypton 36
85 Rb Rubidium 37	88 Sr Strontium 38	89 Y Yttrium 39	91 Zr ^{Zirconium} 40	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te ^{Tellurium} 52	127 I Iodine 53	131 Xe Xenon 54
133 Cs _{Caesium} 55	137 Ba ^{Barium} 56	139 La Lanthanum 57 *	178 Hf ^{Hafnium} 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au _{Gold} 79	201 Hg Mercury 80	204 T1 Thallium 81	207 Pd Lead 82	209 Bi Bismuth 83	Po Polonium 84	At Astatine 85	Rn Radon 86
Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 89 †															
*58-71 Lanthanoid series †90-103 Actinoid series			140 Ce Cerium 58	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm ^{Thulium} 69	173 Yb Ytterbium 70	175 Lu Lutetium 71	
Кеу	a a = relative atomic mass Key X b b = proton (atomic) Number		232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm ^{Curium} 96	Bk Berkelium 97	Cf Californium 98	Es Einstenium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium 102	Lr Lawrencium 103	

DATA SHEET The Periodic Table of the Elements

The volume of one mole of any gas is 28 dm³ at room temperature and pressure (r.t.p.)