	I	I
ZIMBABWE SCHOOL E General Certificate of	EXAMINATION of Education Ordinary I	S COUNCIL
PHYSICS		4023/2
PAPER 2 Theory		
SPECIMEN PA	PER	2 hours 15 minutes
Candidates answer on the question paper		
Additional materials: Electronic calculator Answer paper		
Time 2 hours 15 minutes INSTRUCTIONS TO CANDIDATES		
Write your name, centre number and candid and on any separate answer paper used.	ate number in the spaces	at the top of this page
Section A Answer all questions. Write your answers in the spaces provided o	on the question paper.	
Section B		
Answer any three questions. Write your answers on the separate answer p At the end of the examination fasten the ans	paper provided. wer paper used securely t	o the question paper.
INFORMATION FOR CANDIDATES The number of marks is given in brackets [] Candidates are reminded that all quantitative] at the end of each questi e answers should include	on. appropriate units.
This question paper consists of Copyright: Zimbabwe School E	f 11 printed pages and 1 Examinations Council, Specime	blank page. en Paper.

Candidate Name	Centre Number	Candidate Number
	2	

Section A

Answer **all** questions from this section.

1. (a) The total mass of a cyclist and the bicycle is 90 kg. The cyclist accelerates from rest with a driving force of 135 N against a frictional force of 30 N.

Calculate the acceleration.

[3]

(b) State any two factors that affect the size of the frictional force in (a).

[2]

Candidate Name		Centre Number	Candidate Number
	3		

- (a) Distinguish between displacement and distance.
 - (b) Fig. 2.1 shows a stone attached to a string being whirled around at a constant speed of 10 m/s.

(i) State the velocity at B and velocity at D.

2

velocity at B	
velocity at D	

[2]

[1]

(ii) Explain why the stone in Fig. 2.1 is accelerating.

4. (a) Fig. 4.1 shows a liquid being heated.

Draw arrows to show convectional currents on **Fig.4.1**. [1]

(b) Explain how convectional currents are produced when a liquid is heated.

4023/2 specimen paper

Candidate Na	ame	Centre Number	Candidate Numbe
		5	[2]
(c)	Describe heat transfer by cond	luction.	[-]
(c) Describe heat transfer by conduction of the specific latent heat. (a) Define specific latent heat. (b) Calculate the amount of heat require [specific latent heat of fusion of ice (c) State the effect of impurities on			
	(c) Describe heat transfer by conducti (a) Define specific latent heat. (b) Calculate the amount of heat required [specific latent heat of fusion of ice = (c) State the effect of impurities on th		
			[0]
5 (a)	Define specific latent heat		[2]
5. (a)	Denne specific iaient neut.		
			[2]
(b) Ca	lculate the amount of heat req	uired to melt 80 g of ice at 0 °C.	
[s ₁	pecific latent heat of fusion of	ice = 330 J/g]	
			heat
ree	quired =	J.	
			[2]
(c)	State the effect of impurities of	on the melting point of ice.	
		8 r	
			[1]
	40	23/2 specimen paper	
			[Turn ava

Candidate Name		me Ce	Centre Number Candidate Number		
					$\overline{}$
		6			
6.	(a)	In an experiment, a plastic rod was ch	arged by rubbing	it on a piece of cloth	
		State the type of charge on the cloth.			
					[1]
	(b)	Describe how the rod became charged	l.		
			11		[2]
	(c)	Explain why the pieces of paper were	small pieces of p attracted to the ro	aper. od.	
					[2]
7.	(a)	State any one limitation of Ohm's law	•		
					[1]

(b) Sketch an I-V characteristic graph for a filament lamp.

Candidate Name		Centre Number	Candidate Number
7	7		

[2]

(c) A 3 Ω resistor is connected to a 1.5 V supply. Calculate the amount of current passing through the resistor.

				[2]
8.	(a)	Two	atoms of mass numbers 20 and 21 have a proton number of 10.	
		(i)	State the name given to the atoms.	
				[1]
		(ii)	Determine the number of neutrons in the atom of mass number 21.	
				[1]
	(b)	A ra	dioactive sample has a mass of 10 g and a half-life of 5 days.	

Calculate the number of days taken for the sample to decay to 1.25 g.

Candidate Name	Centre Number	Candidate Number	
			\sum
	8		-

Section **B**

Answer any three questions from this section.

- 9 (a) (i) State the SI unit of density.
 - (ii) Describe how the density of a regular object is measured.
 - (iii) Explain why ice floats on water.

[6]

(b) Fig. 9.1 shows a velocity-time graph of a body in motion.

- (i) Define *acceleration*.
- (ii) Calculate the displacement in 10 seconds.

(iii) Determine the acceleration between 4 seconds and 10 seconds. [6]

- (c) (i) State two conditions necessary for a body to be in free fall.
 - (ii) Describe how a falling body attains terminal velocity.
 - (iii) Suggest good experimental techniques to be observed during an experiment to determine terminal velocity of an object dropped into oil.
 [8]

10. (a) Fig. 10.1 shows a pulley system used to lift a load of mass 20 kg with an effort of 95 N.

- (i) Name a single pulley that has the same velocity ratio as the pulley system in **Fig. 10.1**.
- (ii) State the purpose of pulley A.
- (iii) Calculate the mechanical advantage of the pulley system.
- (iv) Suggest why the mechanical advantage can never be greater than the velocity ratio for any pulley system. [6]
- (b) Water in a river flows over a cliff 70 m high.
 - (i) Calculate the change in gravitational potential energy of each kilogram of the water.

$$[g = 10 \text{ ms}^{-2}]$$

Candidate Name		Centre Number Candidate Number	mber	
		10		
	(ii)	Determine the speed at which a kilogram of the water hits the bottom of cliff.	the	
	(iii)	State the assumption made in (ii).	[6]	
(c)	(i)	Name two methods of welding.		
	(ii)	State any two safety precautions taken during welding.		
	(iii)	Give a reason for cleaning metal surfaces before welding.		
	(iv)	Suggest, giving two reasons, a method of joining a capacitor to a comput motherboard.	ter [8]	
11. (a)	(i)	State what happens to electromagnetic waves when they		
		 1.change medium, 2. pass through a magnetic field. 		

- (ii) State any two uses of visible light.
- (iii) Explain why the frequency of ultra violet light is greater than that of microwaves. [6]
- (b) (i) Define a *wavefront*.
 - (ii) Sketch a diagram showing straight wavefronts for a water wave passing normally from shallow end to deep end.
 - (iii) State two characteristics of a wave which will change if the water in (ii) passes the boundary at an angle.[6]
- (c) Temperature measurement involves two fixed points.
 - (i) Define the
 - 1. lower fixed point,
 - 2. upper fixed point.

Candidate Name	Centre Number	Candidate Number

11

(ii)

12.

110 mm at steam point.

The length of a mercury thread in a thermometer is 10 mm at ice point and

Calculate the temperature that corresponds to 70 mm length of mercury.

	(iii)	Suggest, with a reason why a mercury in glass thermometer cannot measur melting point of carbon dioxide.	re [8]
(a)	(i)	Describe how electricity may be used to	
		1. make a permanent magnet,	
		2. demagnetise a magnet.	
	(ii)	Explain why an electric current can be used to separate iron from copper. [0	6]
(b)	(i)	State four differences between the magnetic properties of iron and steel.	
	(ii)	A piece of metal was found in the school yard. Describe how a student may determine whether the metal is a magnet or no	ot. [6]
(c)	In ho point	ousehold circuits, several components are connected across two common ts.	
	(i)	Suggest two advantages of connecting the components in this way.	
	(ii)	State two dangers of electricity.	
	(iii)	Suggest a suitable rating for a fuse to be used on an appliance rated 800 W, 240 V.	,
	(iv)	Explain why the fuse must be connected to the live wire.	[8]

4023/2 specimen paper

Candidate Name	Centre Number	Candidate Number
	12	

