Candidate Name Centre Number Candidate Number

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Ordinary Level

COMBINED SCIENCE

4003/2

PAPER 2 Theory

SPECIMEN PAPER N2020

2 hours

Additional materials:

Answer sheets

Calculator (Optional)

String

Graph paper (as per candidate's request)

The Periodic Table is provided on page 15.

INSTRUCTIONS TO CANDIDATES

Write your name, centre number and candidate number in the spaces at the top. Check if the booklet has all the pages and ask the invigilator for a replacement if it has missing pages.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any **two** questions.

Write your answers on the separate answer sheets provided.

Section C

Answer any **two** questions.

Write your answers on the separate answer sheets provided.

Section D

Answer any **two** questions.

Write your answers on the separate answer sheets provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question.

This question paper consists of 16 printed pages.

Copyright: Zimbabwe School Examinations Council, N2019.

© ZIMSEC SPECIMEN PAPER N2020 [Turn over

Section A

Answer **all** the questions in the spaces provided.

l .	(a)	State	e any two differences between inhaled and exhaled air.	
		2		
				[2]
	(b)	Tran	spiration is the loss of water through plant leaves.	
		(i)	State any one advantage of transpiration to the plant.	
				[1]
		(ii)	State one disadvantage of excessive transpiration.	
				[1]
		(iii)	State any two factors which increase the rate of transpiration.	[-]
			1	
			2	
				[2]

2.	(a)	Desc	Describe a natural ecosystem.					
	(b)	(i)	Define the term <i>balanced diet</i> .	[2]				
		(ii)	Describe the importance of calcium to a pregnant woman.	[2]				
				[2]				
		(iii)	State the advantage of eating liver.					
				[1]				
3.	(a)	Chlo	rine gas has two types of atoms as shown: ${}^{35}_{17}Cl ~~and ~~{}^{37}_{17}Cl$					
		(i)	State the name given to the two types of the chlorine atoms.					
		(ii)	Calculate the number of neutrons in $^{35}_{17}Cl$.	[1]				
	(b)	Chlo	rine reacts with sodium to form sodium chloride, NaCl.	[1]				

	(i)	Name the type of bonding in sodium chloride.					
				[1]			
		(ii)	Draw a dot and cross diagram to show the bonding in sodium chloride.				
				[2]			
	c)	State	e any two physical properties of sodium chloride.				
		1 2					
				[2]			
4.	(a)		gestion is caused by too much dilute hydrochloric acid in the stomach. It is c ngesting anti-acid tablets.	ured			
		State table	e, with a reason, the acid-base nature of the chemical present in the anti-acid ets.				
		acio reas					
		***************************************		[2]			
	(b)	(i)	Iron is extracted from an iron compound found in haematite. Name the iron compound in haematite.				
				[1]			

(c) Two other solid raw materials are fed into the blast furnace together with haematite. Name the **two** raw materials and state a function for each of these materials.

aw material
unction
aw material
unction

[4]

5. (a) Fig.5.1 shows a stroke in the operation of an engine.

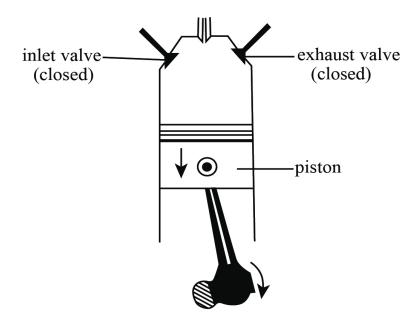


Fig.5.1

(i) Identify, giving **two** reasons, the stroke shown.

stroke		
reasons: 1		
2		

[3]

b)		State the role of a fuel injector in a petrol engine.					
			[1]				
	(ii)	State the role of a carburettor.					
			[1]				
	(iii)	Explain the advantage of a fuel injector over a carburettor.					
			[2]				

6. Fig.6.1 shows part of the design of a solar water heater.

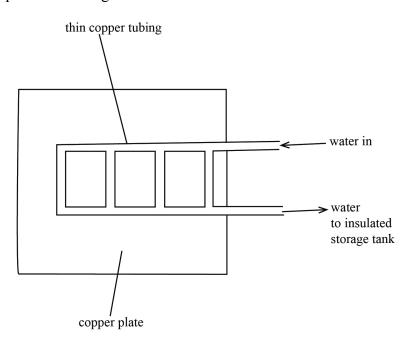
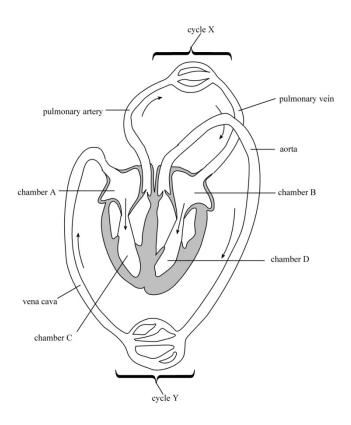


Fig.6.1


(a)	State, with a reason, the most suitable place for placing the solar water heater for best results.
	placereason
	[2]
(b)	State, with a reason, the paint colour on the copper plate. colour reason
	[2]
(c)	Explain why (i) a thin copper tubing is used,
	(ii) the storage tank is insulated.

[2]

Section B

Answer any two questions on the separate answer sheets provided.

7. (a) Fig.7.1 shows a sketch diagram to represent double circulation in mammals.

State any two effects of inhaling glue.

(v)

Fig.7.1

(i) Deduce the types of circulation represented by cycles X and Y. [2]
(ii) Suggest the reason for differences in the thickness of the walls of chambers C and D. [2]
(iii) State any three symptoms of malaria. [3]
(iv) State a symptom of ebola which is different from symptoms of malaria. [1]

[2]

8. (a) Fig.8.1 shows a child suffering from a deficiency disease.

Fig.8.1

(i) Name the deficiency disease which the child is suffering from. [1]
(ii) Describe how the disease named in (i) could be prevented. [2]
(b) Describe the route of the sperm from the testis to the oviduct. [4]
(c) State one advantage of using condoms during sexual intercourse. [1]
(d) Define the term fertilisation. [2]

9. (a) Fig.9.1 shows gaseous exchange in the alveolus of a mammal.

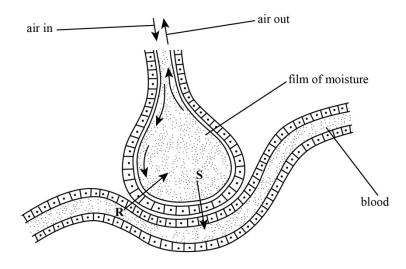


Fig.9.1

- (i) Name the gases moving in the directions shown by the arrows **R** and **S**. [2]
- (ii) Describe and explain how the alveolus is adapted for gaseous exchange. [4]
- **(b)** Define the terms *plasmolysis* and *turgidity*.

Section C

Answer any two questions on the separate answer sheets provided.

10.	(a)	(i)	Define the term <i>atom</i> .	[1]						
		(ii)	State the two sub-atomic particles found in the nucleus of an atom.	[2]						
	(b)		Determine the empirical formula of a compound made up of 75% by mass carbons by mass hydrogen.							
	(c)	Sodi	um hydroxide solution reacts with dilute nitric acid acid to form a salt and wa	ater.						
		(i)	State the type of reaction that occurs.	[1]						
		(ii)	Determine the chemical formula of the salt.	[2]						
11.	(a)	Outli	ne the stages involved in the extraction of nitrogen from liquid air.	[4]						
	(b)	Oxyg	gen can be obtained from the electrolysis of acidified water.							
		(i)	Name the acid used to acidify the water.	[1]						
		(ii)	Explain why the water is acidified.	[2]						
		(iii)	Explain why the volume of oxygen obtained during the electrolysis process half that of hydrogen.	is [2]						
		(iv)	State any one use of oxygen.	[1]						

12. Fig.12.1shows the production of sulphuric acid by the contact process.

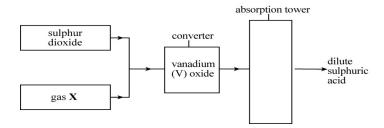


Fig.12.1

- Name gas X. [1] (a) **(i)** (ii) State the role of vanadium (V) oxide. [1] (iii) Explain why sulphur trioxide is **not** directly added to water. [2] Define the terms exothermic and reversible. (iv) [2] Name the substance which is formed in the absorption tower. [1] (v)
- (b) Ammonium sulphate, (NH₄)₂SO₄, is a fertilizer produced from sulphuric acid. Calculate the percentage composition by mass of nitrogen in ammonium sulphate. [3]

Section D

Answer any two questions on the separate answer sheets provided.

13. (a) Fig.13.1 shows an alternating current (a.c) generator.

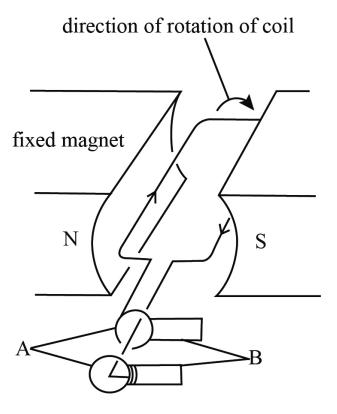


Fig.13.1

- (i) Name the parts labelled **A** and **B**. [2]
- (ii) Describe how the a.c. generator produces electricity. [4]
- (iii) Sketch a graph of output voltage of the generator against time. [2]
- (b) Explain the effect of using stronger magnets on the magnitude of the output voltage. [2]

14.	(a)	A gear system has ten teeth in the driving gear and thirty teeth in the driven gear.						
		(i)	Calculate the velocity ratio, VR, of the gear system.	[2]				
		(ii)	Determine the efficiency of the system if its mechanical advantage, MA, is 2.	[2]				
		(iii)	Give any two reasons why the efficiency of a machine is always less than 100% .	[2]				
		(iv)	State any two ways by which the efficiency of a machine can be improved.	[2]				
	(b)	State	any two types of machines apart from gears.	[2]				
15.	(a)	Desc	ribe how electricity is generated at a thermal power station.	[4]				
	(b)	State any two disadvantages of using coal as a source of fuel for a thermal power station.						
	(c)		the main difference between a thermal power station and a hydroelectric er station.	[2]				
	(d)	State	the type of energy possessed by water which is in a dam.	[1]				
	(e)	State	the Standard International (S.I) unit of energy.	[1]				

DATA SHEET
The Periodic Table of the Elements

Key	*58-7 †90-	Francium 87	133 Cs Caesium	Rb Rb Rubidium	39 X Potassium	23 Na Sodium	7 Lithium			
σ	71 La 103 /	T rancium		_						
	inthano Actinoi	226 Ra Radium 88	137 Ba Barium	88 Strontium	40 Ca Calcium	Mg Mg Magnesium	9 Be Beryllium		=	
a = relative atomic massX = atomic symbolb = proton (atomic) Number	*58-71 Lanthanoid series †90-103 Actinoid series	227 Ac Actinium	Lanthanum	89 Y Yttrium	45 Sc Scandium	3				
			Hf Hf Hafnium	91 Zr Zirconium 40	48 Ti Titanium					
232 Th Thorium 90	140 Ce Cerium 58		181 Ta Tantalum 73	93 Nb Niobium	51 Vanadium 23					
Pa Protactinium 91	141 Pr Praseodymium 59		184 W Tungsten	96 Mo Molybdenum	52 Cr Chromium					
238 U Uranium 92	Neodymium 60		186 Re Rhenium	Tc Technetium	Mn Manganese 25					
Np Neptunium 93	Pm Promethium 61		190 OS Osmium	101 Ru Ruthenium	56 Fe Iron			1 Hydrogen		
Pu Plutonium 94	150 Sm Samarium		192 Ir Iridium	Rhodium	59 Co Cobalt					Gr
Am Americium 95	152 Eu Europium 63		195 Pt Platinum	106 Pd Palladium	59 Ni Nickel					Group
Cm Curium 96	157 Gd Gadolinium 64		197 Au Gold	108 Ag Silver	64 Cu Copper					
BK Berkelium 97	159 Tb Terbium 65		201 Hg Mercury 80	112 Cd Cadmium	65 Zn Zinc					
Cf Californium 98	162 Dy Dysprosium 66		204 T1 Thallium	115 In Indium	70 Ga Gallium	27 A! Aluminium 13	11 B		=	
Es Einstenium	165 Ho Holmium 67		207 Pb Lead	119 Sn Tin	73 Ge Germanium	28 Si Silicon	12 C Carbon		<	
Fm Fermium 100	167 Er Erbium 68		209 Bi Bismuth	122 Sb Antimony 51	75 AS Arsenic	31 P Phosphorus	14 X Nitrogen		<	
Md Mendelevium 101	169 Tm Thulium		Po Polonium 84	Tellurium 52	79 Se Selenium	32 S Sulphur	16 Oxygen		<u> </u>	
No Nobelium 102	173 Yb Ytterbium		At Astatine 85	127 I lodine 53	80 Br Bromine	35.5 Cl Chlorine	19 T Fluorine		\	
Lr Lawrencium 103	175 Lu Lutetium		Rn Radon	131 Xe Xenon	84 Xr Krypton	40 Ar Argon	20 Ne Neon	He He	0	

The volume of one mole of any gas is 28 dm³ at room temperature and pressure (r.t.p.)

BLANK PAGE