APPLIED MATH PAPER 2

1. A stone is thrown vertically upwards with velocity $16 \mathrm{~ms}-1$ from a point H metres above the ground level. The stone hits the ground 4 seconds later.

Calculate the;
a) value of H
b) velocity of the stone as it hits the ground
2. A discrete random variable X has the following probability distribution:

x	0	1	2	3	4	5
$P(X=x)$	0.11	0.17	0.2	0.13	p	0.09

a) value of p
b) expected value of X
3. Use the trapezium rule with seven ordinates to estimate

$$
\int_{0}^{3}\left[(1.2)^{x}-1\right]^{1 / 2} d x
$$

correct to 2 decimal places
4. . A uniform rod $A B$ of length 3 m and mass 8 kg is freely hinged to a vertical wall at A . A string BC of length 4 m attached to B and to a point C on the wall, keeps the rod in equilibrium. If C is 5 m vertically above A , find the;
a) tension in the string
b) magnitude of the normal reaction at A
5. The table below shows the masses of bolts bought by a carpenter

Mass (grams)	98	99	100	101	102	103	104
Number of bolts	8	11	14	20	17	6	4

Calculate the;
a) median mass
b) mean mass of the bolts
6. The table below shows the commuter $\mathrm{h}=\mathrm{bus}$ fares from stage A to stages $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E

Stage	A	B	C	D	E
Distance (km)	0	12	16	19	23
Fare (Shs)	0	1300	1700	2200	2500

a) Jane boarded fro mA and stopped at a place 2 km after E. How much did she pay?
b) Okello paid Shs 2000. How far from A did the bus leave him?
7. The amount of mrat sold by a butcher is normally distributed with mean 43 kg and standard deviation 4 kg . Determine the probability that the amount of meat sold is between 40 kg and 50 kg .
8. A particle is movung with Simple Harmonic Motion (SHM). When the particle is 15 m from the equilibrium, its speed is $6 \mathrm{~ms}^{-1}$. When the particle is 13 m from the equilibrium, its speed is $9 \mathrm{~ms}^{-1}$. Find the amplitufr of the motion.
9. Car A is 80 m North West of point O . Car B is $50 \mathrm{~m} \mathrm{~N} 30^{0} \mathrm{E}$ of O. Car A is moving at $20 \mathrm{~ms}^{-1}$ on a straight road towards O. Car B is also moving at $10 \mathrm{~ms}-1$ on another straight road towards O. Determine the;
a) initial distance between the two cars
b) velocity of A relative to B
c) shortest distance between the two cars as they approach O
10. The table below shows the marks obtained in a Mathematics test by a group of students.

Marks	$5-<15$	$15-<25$	$25-<35$	$35-<45$	$45-<55$	$55-<65$	$65-<75$	$75-<85$
Number of Students	5	7	19	17	7	4	2	3

a) Construct a cumulative frequency curve (Ogive) for the data
b) Use your Ogive to find the;
i) range between the $10^{\text {th }}$ and $70^{\text {th }}$ percentiles
ii) probability that a student selected a random scored below 50 marks
11.a) Show that the equation $x-3 \sin x=0$ has a root between 2 and 3
b) Show that the Newton - Raphson iterative formula for estimating the root of the equation in (a) is given by

$$
x_{n}+1=\frac{3\left(\sin x_{n}-x_{n} \cos x_{n}\right)}{1-3 \cos x_{n}}, n=0,1,2 \ldots
$$

Hence find the root of the equation correct to 2 decimal places
12. A force $F=(2 t I+j-3 t k) N$ acts on a particle of mass 2 kg . The particle is initially at a point $(0,0,0)$ and moving with a velocity

$$
(i+2 j-k) m s^{-1}
$$

Determine the;
a) magnitude of the acceleration of the particle after 2 seconds
b) velocity of the particle after 2 seconds

c) displacement of the particle after 2 seconds
13. Two events A and B are such that

$$
P(B)=\frac{1}{8}, P(A \cap B)=\frac{1}{10} \text { and } P(B \mid A)=\frac{1}{3}
$$

Determine the;
a) P (A)
b) $P(A \cup B)$
c) $\mathrm{P}(\mathrm{A} \mid \bar{B})$

$$
\begin{aligned}
& \text { 14. Given that } \mathrm{y}=\mathrm{e}^{\mathrm{x}} \text { and } \mathrm{x}=0.62 \text { correct to two decimal } \\
& \text { places, find the interval within which the exact valuw of } \mathrm{y} \text { lies } \\
& \text { b) Show that the maximum possible relative error in } \\
& y \sin ^{2} x \text { is }\left|\frac{\Delta y}{y}\right|+2 \cot x|\Delta x| \text { Where } \Delta x \text { and } \Delta y
\end{aligned}
$$

Hence find the percentage error in calculating

$$
y \sin ^{2} x \text { if } y=5.2 \pm 0.05 \text { and } x=\frac{\pi}{6} \pm \frac{\pi}{360}
$$

15. The diagram below shows a trapezium $\mathrm{ABCD} . \mathrm{AD}=\mathrm{DC}=\mathrm{CB}=1$ metre and $\mathrm{AB}=2$ meters.

Forces of magnitude $1 \mathrm{~N}, 3 \mathrm{~N}, 5 \mathrm{~N}, 6 \mathrm{~N}$ and $2 \# 3 \mathrm{~N}$ act in the directions $\mathrm{AD}, \mathrm{DC}, \mathrm{CB}, \mathrm{BA}$ and AC respectively

a) Calculate the magnitude of the resultant force and the angle it makes with side $A B$
b) Given that the line of action of the resultant for meets AB at X , find the distance AX
16. A biased die with faces labeled $1,2,2,3,5$ and 6 is tossed 45 times. Calculate the probability that 2 will appear;
a) more than 18 times
b) exactly 11 times

END

