		Année scolaire 2020	-2021
Département de Mathématiques	CONTRÔLE	Date : 17/10/2020	
ÉPRI Niveau : PC	Durée : 3 houres	Cocf: 6	
PARTIE A : ÉVALUATI	ON DES RESSOURC	ES (15 POINTS)	
Exercice 1 : (5 points)		,	
On considère le polynôme P dé	$\text{éfini par } P(x) = x^2 + (2)$	$m + 1)x + m^2 + 1$	
		이 사람이 많아 그렇게 하는 그는 바람이 되었다. 그렇게 되었다면 얼마를 하는 것이 없는 것이 없다면 하다면 다른 사람이 되었다면 다른 사람이 되었다면 하다면 하다면 하다면 하다면 하다면 하다면 하다면 하다면 하다면 하	1 5
 Résoudre l'équation p(x) = 0 pour m = 3/4; m = 2 et m = -2. Déterminer pour quelles valeurs de m, P admet deux racines positives. 			1,5pt
3) Déterminer les valeurs de	e m pour lesquelles P aday	t demos positivos.	1pt
a) $\alpha^2 + \beta^2 = 29$.	o pour resquence r dutie	A deligation of p tel	0,75pi
b) $ \alpha - \beta = 1$.			0,75pt
4) Pour chacun des cas ci-dessus calculer α et β .			lpt
Exercice 2 : (4 points)	101		117
1) Résoudre dans R × B, le	biging (c) (x+y=8		
Aisponio	systeme (3): $y = \frac{63}{9}$.	51	1pt
2) ABC est un triangle. Le	point E appartient au segm	ent [AB] et le point F ap	partient
atate nu segment[AC] tel que l	les droites (EP) et (BC) soit	parallèles. Le périmètre	du
triangle ABC est 20. On	pose $AE = x$, $FC = y$, BE	I = 4,5, AF = 3; 5 et B	C = 4.
n) Réaliser la figure.			0,5pt
 b) Montrer que x et y vérifical le système (S). c) En déduire les valeurs de AE et de FC. 			1,5p
Exercice 3 : (3,5 points)	de Als et de FC.		1p
1) On considère l'équation	(E): $r^3 = 8r^2 + 10r = 1$	2 – 0	
., on continues respondent	(b). A OX T 19X - 17	z = 0.	
a) Vérifier que l'est un	e solution de (F)		
 a) Vérifier que 1 est une b) Résoudre dans R l'éc 		1-	
b) Résoudre dans R l'éc	quation (E).	< 16x2 ± 24	0,25pt 0,75pt
 b) Résoudre dans R l'éc c) Résoudre dans R l'in 	quation (E). néquation (I) : $2x^3 + 38x$	$< 16x^2 + 24.$	0,75pt
b) Résoudre dans R l'éc c) Résoudre dans R l'in 2) Résoudre dans R les équ	quation (E). néquation (I): $2x^3 + 38x$ nation et inéquation suivant	< 16x ² + 24. les :	0,75pi 0,75pi
 b) Résoudre dans R l'éc c) Résoudre dans R l'in 2) Résoudre dans R les équ a) √2x² - x + 1 + 3 - 	quation (E). néquation (I): $2x^3 + 38x$ nation et inéquation suivant -2x = 1 - x.	< 16x ² + 24. les :	0,75pi 0,75pi 0,75pi
b) Résoudre dans R l'éc c) Résoudre dans R l'in 2) Résoudre dans R les équ a) $\sqrt{2x^2 - x + 1} + 3 - 2$ b) $\sqrt{7 - 3x} - 2 \le \sqrt{x + 2}$	quation (E). néquation (I): $2x^3 + 38x$ nation et inéquation suivant -2x = 1 - x.	< 16x ² + 24. les :	0,75pi 0,75pi 0,75pi
b) Résoudre dans R l'éc c) Résoudre dans R l'in 2) Résoudre dans R les équ a) $\sqrt{2x^2 - x + 1} + 3 - 4$ b) $\sqrt{7 - 3x} - 2 \le \sqrt{x + 4}$ Exercice 4 : (2,5points)	quation (E). néquation (I): $2x^3 + 38x$ untion et inéquation suivant $2x = 1 - x$.	< 16x ² + 24. les :	0,75pi 0,75pi 0,75pi
b) Résoudre dans R l'éc c) Résoudre dans R l'in 2) Résoudre dans R les équ a) $\sqrt{2x^2 - x + 1} + 3 -$ b) $\sqrt{7 - 3x} - 2 \le \sqrt{x + 1}$ Exercice 4 : (2,5points) On donne $H(x) = -3x^2 + (2x + 1)$	quation (E). néquation (I): $2x^3 + 38x$ nation et inéquation suivant 2x = 1 - x. $+7$. \times $2 - 3\sqrt{3}(x + 2\sqrt{3})$.	les :	0,75pt 0,75pt 0,75pt 1pt
b) Résoudre dans R l'éc c) Résoudre dans R l'in 2) Résoudre dans R les équ a) $\sqrt{2x^2 - x + 1} + 3 - 4$ b) $\sqrt{7 - 3x} - 2 \le \sqrt{x + 4}$ Exercice 4 : (2,5points)	quation (E). néquation (I): $2x^3 + 38x$ nation et inéquation suivant 2x = 1 - x. $+7$. \times $2 - 3\sqrt{3}(x + 2\sqrt{3})$.	les :	0,75pt 0,75pt 0,75pt 1pt
 b) Résoudre dans R l'écci Résoudre dans R l'in 2) Résoudre dans R les équal √2x²-x+1+3-b) √7-3x-2 ≤ √x+4 Exercice 4: (2,5points) On donne H(x) = -3x²+(x²-1) Sans résoudre l'équation distinctes. 2) Soit x₁ et x₂ ces racines. 	quation (E). néquation (I): $2x^3 + 38x$ uation et inéquation suivant 2x = 1 - x. $7 - 7 \times 2 = 1 - x$. $1 - 7 \times 2 = 1 - x$. $1 - 7 \times 2 \times 3 \times 4 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =$	a exactement deux raci	0,75pi 0,75pi 0,75pi 1pi nes 0,5pi
 b) Résoudre dans R l'écci Résoudre dans R l'in 2) Résoudre dans R les équal √2x²-x+1+3-b) √7-3x-2 ≤ √x+4 Exercice 4: (2,5points) On donne H(x) = -3x²+(x²-1) Sans résoudre l'équation distinctes. 2) Soit x₁ et x₂ ces racines. 	quation (E). néquation (I): $2x^3 + 38x$ nation et inéquation suivant 2x = 1 - x. $+7$. \times $2 - 3\sqrt{3}(x + 2\sqrt{3})$.	a exactement deux raci	0,75pi 0,75pi 0,75pi 1pi

PARTIE B : ÉVALUATION DES COMPÉTENCES (4,5 POINTS)

La plantation de M. Abena a la forme d'un rectangle dont le périmètre est de 225 mètres. Il sait que parmi tous les rectangles ayant ce périmètre, sa plantation a la surface la plus grande. Pour planter ses 176 arbres fruitiers, il doit d'abord agrandir son terrain par location d'un espace chez son voisin, il a alors un terrain rectangulaire de 135 m de long sur 90 m de large. Il va planter ses arbres dans toute la plantation de telle sorte qu'il y ait un arbre à chaque extrémité de la plantation et que les arbres soient régulièrement espacés. Son fils Atéba, décide de Protéger la plantation de son père en entourant cette dernière par du fil barbelé qui coûte 350 FCFA le mètre. Il doit faire passer deux rangés de ce fil autour de la plantation en laissant une entrée de 4 mètres pour le portail tout en donnant 10.000 FCFA pour la main d'œuvre du menuiser.

Déterminer les dimensions de la plantation de M. Abena.

1,5pt

Déterminer quelle doit être la distance entre deux rangées d'arbres.

1,5pt

3) Déterminer la somme que doit dépenser le fils pour la protection de la plantation de WWW.SKYlon.or son père. 1,5pt

Présentation: 0,5pt

notre plateforme sera disponible très bientot