(AMEROON (GENERAI CERTIFICATE OF EDUCATION BOARI)

(ieneral (certificate of liducation Examination

JUNE 2019

ORDINARY LEVEL

Subject Tiill	Physics
P'aper No.	2
Subject Code No.	$\mathbf{1 5 8 0}$

Two and a half hours

Answer Al.I. questions.

You arce ahised to divide your time acoording!?:
In section II answer EITIIER the a, band c OR the d, e, and fof each question
Fior your guidence the approximalle menk for each parl of a question is indicated in breackels.
You are reminded of the necessity for good English and orderly presentation in your answers.
In calculations you are culvised to show all the steps in your working, giving your answer at each stage.
Where mecessarly assume:

- the accelderation offiree fall. $g \quad 10 \mathrm{ml} \mathrm{s}^{-2}$
- the speced of lighlin in air: c $\quad 3 \times 10^{8} \mathrm{mI}_{\mathrm{s}^{-1}}$
- Hue churge oll alli chectrom, e $1.6 \times 10^{-19}{ }^{\circ}$
(alcoulators arre allowed.
https://www.edukamer.info/

SECTION I

Answer all questions in one hour

I. (a) Figure I shows a circuit diagram used to run a small radio from the mains transformer:

Figure 1
(i) What kind of transformer is used? Explain.
(2 marks)
(ii) Identify the component, M , and state its function.
(b) Figure 2 shows a solenoid wound on a cardboard tube. The ends of the solenoid are connected to a I)(' source through a rheostat and switch.

1

Figure 2
(i) Copy the figure and sketch the magnetic field (indicating its polarity) when the switeh is closed. (2 marks)
(ii) State one method of making the magnetic field stronger.
(iii) Name one device which makes use of magnetism that can be switched on and off.
2. Figure 3 shows a simple cirenil diagram.

Figure 3
(a) Identify the instruments labelled X and Y.
(b) Calculate the total resistance of the eircuit.
(c) Calculate the corrent llowing through the 2Ω resistor.
3. (a) (i) Deline specilic latent heat of vaporization.
(ii) Why is the specific latent heat of vaporization of water much larger than its specilic heat capacity?
(b) The mereury column of a newly made mercury-in-glass thermometer is 5 cm long when the bulb is dipped in pure melting ice. When the bulb is transferred into steam from pure boiling water at standard atmospheric pressure, the mercury column is 17 cm long. When the bulb is dipped into another liquid of unknown temperature, (), the mercury column is 10 cm long.
(i) What is the thermometric property of this thermometer?
(ii) Calculate the unknown temperature, ()$^{\circ}$, in ${ }^{\circ} \mathrm{C}$.
4. ligure 4 shows a simple pulley system used to raise a load of 500 N unto a storey building under construction by applying ant elfort of 200 N .

Figure 4
(a) What is the velocity ratio of the pulley system?
(b) Calculate the mechanical advantage of the pulley system.
(c) Calculate the efliciency of the pulley system.
(d) State two reasons why the efficiency is less than 100%.
5. (a) Stale the laws of reflection.
(b) (i) Draw a ray diagran lo show how the eye sees the image of an objee in a plane mirror.
(ii) State two characteristics of this image.
6. (a) Distinguish between:
φ (i) ant intrinsic and ant extrinsic semienonductor.
(2 marks)
φ
(ii) a p-lype and ann n-type semiconductor.
(b) Name ant element that can be added to a crystal of pure silicon to produce an n-type semiconductor.

SECTION II

Answer all questions choosing, EITHER the a, band c OR the d, e, and fof ench question.

Auswer EITHIER 7 u, b and c

7. (a) (i) Define density and state its unit.
(2 marks)
(ii) Deseribe ant experiment to delermine the density of a piece of stone (irregularly-shaped object). Include in your description:

- a list ol apparatus needed
- a diagram of the set-up
- the procedure you will use to collect data
- how the data is used to obtain the density of the stone
- any precaution taken to minimize error.
(b) (i) Deline pressure.
Λ rectangular block 0.01 m by 0.02 m by 0.04 m has a mass of 0.064 kg . Calculate
(ii) the area of the largest face of the block.
(iii) He weight of the block.
(iv) the pressure the block will exert on a surface when lying on its largest face.
(c) (i) Deline elastic limit.
(ii) Λ eopper wire is stretehed by a foree which is gradually increased in magnitude until the wire breaks. Sketeh a force . extension graph for the wire. On your graph indicate the elastic limit.

OR $7 \mathrm{dl}, \mathrm{e}, \mathrm{aln} \mathrm{lf} \mathrm{f}$

7. (d) (i) Deline a longitudinal wave and give an example.
(ii) Describe an experiment to determine the speed of sound in air. Include in your description:

- a list of apparatus needed
- a diagram of the set-up
- lle procedure you will use to collect data
- how the data is used to obtain the speed of sound
- any precantion taken to minimize error.
(c) (i) Deline wavelengith.

Plane waves generated on the surface of a ripple tank are found to travel 0.74 m in 1.6 s . The distance between a crest and ant adjacent trongh is 0.06 m . Calculate:
(ii) The average speed of the wave.
(iii) The wavelengit of the wave.
(iv) The freguency of the wave.
(i) (i) Define the principal focus of a converging lens.
(2 marks)
(ii) Draw a ray diagram to show how a converging lens is used as a magnifying glass.
8. (a) (i) State Ohin's law.
(2 marks)
In an experiment to verify the relationship between the current, I, flowing through a conductor, and the potential diflerence, V, across its lerminals, a student obtained the following data:

V / V	0.0	2.0	4.0	6.0	8.0	10.0	12.0	14.0
$\mathrm{I} / \mathrm{\Lambda}$	0.0	1.0	3.2	5.0	6.3	7.5	9.4	11.0

(ii) Plot a graph of potential diflerence, V, on the y-axis against eurrent, I, on the x-axis.
(5 marks)
(iii)thetermine the gradient of the graph and state its significance.
(iv) What is the current in the cirenit when the potential difference is 9 V . Show elearly how you arrived at the alliswer.
(b) (i) Deline eledric current and state its unit.
(ii) Λ charge of 40 C flows past a point in a circuit in 10 s . Calculate the current that flows.
(c) (i) Fiuses and earth wires are protective devices used in house wiring. State what each of them protects.
(2 marks)
(ii) An electric iron is rated $1000 \mathrm{~W}, 220 \mathrm{~V}$. Determine whether a fuse of value 3.2 A will be suitable fior use in the iron.
(2 marks)

OR 8 dle e and f

8. (d) (i) Deline the terms ‘lission’ and "fission' as used in nuclear physies.
(2 marks)
The following data was obtained for the radioactive decay of Sodium-24.

Time/hr Activity/counts min 	478	3	8	12	16	20	24	28

(ii) Plot a graph of activity on the y-axis against time on the x-axis.
(iii) Use the graph to determine the half-life of Sodium-24.
(iv) What will be the activity of Sodium-24 when the time is 10 hours'? Show clearly how you (3 marks) answer.
(c) The following equation represents the radioactive decay of Thorium-232 to a different element X.

$$
{ }_{90}^{232} \mathrm{Th} \rightarrow{ }_{\mathrm{b}}^{\mathrm{a}} \mathrm{X}+{ }_{2}^{4} \alpha
$$

(i) Deline radionalive decaly.
(ii) Delermine the values of a and b.
(1) Radioactivity is eommonly used in the lieds of medicine and industry.
(i) State one use in each of the lieds mentioned above.
(ii) State and explain the property of one of the radiations used in (i) above.

Answer EITHER 9 a, b and c.

9. (a) (i) Deline the lerms 'speed' and 'velocity'.
(2 marks)
(ii) When a driver reads the spedometer of his car while the car is moving, what quantity is he reading'?
(1 mark)
(iii) If the speedometer of the car is bad, what can he do to have an idea of the average speed of the car during a journey of a shor distance?
(3 marks)
(b) \wedge lorry of mass 2000 kg moving along a straight road at a speed $15 \mathrm{~m} \mathrm{~s}^{-1}$ has a head-on collision with a car of mass 1000 kg travelling in the oposite direction. On collision, both vehiches lock together and come to rest on the spot.
(i) Deline momentum.
(1 mark)
(ii) State the law of conservation of linear momentum.
(iii) Calculate the momentum of the lorry before the collision. (2 marks)
(iv) Calculate the speed of the car before collision.
(c) A car initially at rest begins to move with a uniform acceleration for 20 s until it attains a velocity of $15 \mathrm{~ms}^{-1}$.
(i) Give the meaning of the underlined phrase.
(1 mark)
(ii) Calculate the acceleration of the ear.
(2 marks)
(iii) Calculate the distance covered by the car in the 20 s .
(iv) The driver now applies his brakes to bring the car to rest. State the energy conversion that takes place during the braking process.
(2 marks)

OR 9 d, e and f

9. (d) (i) Deline the terms 'mass' and 'weight'.
(2 marks)
(ii) When a butcher uses a bean balance in measuring meat for sale, what physical quantity is he measuringe?
(1 mark)
(iii) The butcher has a beam balance and only one 1 kg load. Iexplain how the butcher can measure 3 kg of meat using the balance only (wo times.
(c) Musa and Muma sit on opposite sides of a see-saw of negligible weight, and it balanees horizontally. Musa has a weight of 400 N and sits 2.7 m away from the pivot. Muma has a weight of 300 N and sits at an unknown distance in the opposite side from the pivent.
(i) What do you understand by the "moment of a foree"?
(ii) State iwo conditions that must be fillilled for the see-saw to balance.
(iii) Calculate the moment of' Musal about the pivot.
(iv) C'alculate the distance of'Muma from the pivot.
 constant lifictional force of 4 N opposing the motion of the box.
(i) Deline a contact liores.
(ii) Calculate the resultant lored acting on the box.
(iii)('alculate the aceeleration of the box.
(iv) Draw a diagran of the box and indicale with arrow headlines all the forees acting on the box.
