SEQUENCES \& SERIES BASIC CONCEPTS LESSON NOTES Edukamer

This summary notes or let's say quick notes on sequences \& series is destined to help students of the class of form 5 get some of the key points on what sequences $\&$ series are all about/

As earlier said, this is just a summary lesson note and we will be touhing jus the key points.

What are sequences and series?

A sequence
A sequence is a set of terms that progresses or regresses in a defined order. For example 1, 2, $3 \ldots$

A series

A series is formed when the terms of a sequence are added. For example 1+3+5+7.

Arithmetic progression (AP)

Qn arithmethic progression is a series or sequence which progresses or regresses with a common or constant difference between the terms denoted by d. For example, 1, 3, 5, 7... Here, the common difference d is $3-1$ or $5-3=2=d$.

The terms of an AP

If the first term of an AP is a and the common difference is d, then the terms of the AP are, a, a+d, a + $2 d, a+3 d \ldots a+(n-1) d$.

Therefore, the number of terms of the AP is given by:

$$
T_{n}=a+(n-1) d
$$

Example

Consider the series $2,+4,+6,+8 \ldots$. find the fifth term of this series.

Solution

$T_{n}=a+(n-1) d$

The first term $a=2, d=4-2$ or $d=6-4$
$\Rightarrow d=2$

From $T_{n}=a+(n-1) d$
$\therefore T_{5}=2+(5-1) 2=2+4(2)$
$\Leftrightarrow T_{5}=10$

Sum of the terms of an AP

The sum of the first n term of an AP whose first term is a and the common difference is d is given by;

$$
S_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

Edukamer

Example:

Find the sum of the first 10 terms of the sequence $3,10,17 \ldots$

Solution:

The first term $a=3$
The common difference $d=10-3=17-10=7$
$S_{10}=\frac{10}{2}[2(3)+(10-1) 7]$
$S_{10}=5[6+63]=345$

The arithmetic mean AM

This is the average of a set of numbers which is calculated by dividing the sum of all terms by the number of terms.

Example:
Find the AM of $3,4,5,6,7$

Solution:

The number of terms is 5 ,

$$
A M=\frac{3+4+5+6+7}{5}=\frac{25}{5}=5
$$

If a, b, c are three consecutive terms of an AP , then b is called the arithmethic mean of a and c.
That is;

$$
\begin{gathered}
d=b-c=c-b \\
2 b=a+c \\
\Rightarrow b=\frac{q+c}{2}
\end{gathered}
$$

Geometric progression GP

A geometric progression is a series or sequence which progresses or regresses with a constant multiplier called the common ratio and is denoted by r. e.g $3,6,12,24 \ldots$ each term is obtaioned by multiplying the previous term by 2 .

The common ratio r is therefore calculated as;

$$
r=\frac{6}{3}=\frac{12}{6} \frac{24}{12}=2
$$

Edukamer

Terms of a geometric progression

If the first term of a GP is \boldsymbol{a} and the common ratio is r, then the terms of the GP are: $a, a r, a r^{2}, a r^{3}$, ...an ${ }^{n-1}$

Therefore, the nth term of the GP is given by;

$$
T_{n}=a r^{n-1}
$$

Example:

Find the (th term of the series $16+8+4+2$

Solution:

$$
a=16, r=\frac{8}{16} \text { or } \frac{4}{8} \text { or } \frac{2}{4}=\frac{1}{2}, n=5
$$

${ }_{\mathrm{From}} T_{n}=a r^{n-1}$

$$
T_{5}=(16)\left(\frac{1}{2}\right)^{5-1}=1
$$

Sum of the terms of a GP

The sum of the first \boldsymbol{n} terms of a GP whose first term is \boldsymbol{a} and common ratio \boldsymbol{r} is given by;

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}, \text { Where } r<1
$$

OR

$$
S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}, \text { Where } r>1
$$

Example:

Find the sum of the first 8 terms of the sequence $2,6,18 \ldots$

Solution:

$$
\begin{gathered}
a=2, \quad r=\frac{6}{2} \text { or } \frac{18}{6} \Rightarrow r=3 . \text { i. e } r>1 \\
\therefore S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
\Rightarrow S_{8}=\frac{2\left(3^{8}-1\right)}{3-1}=6560
\end{gathered}
$$

Edukamer

If $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ are the three consecutive terms of a Geometric progression, then \boldsymbol{y} is the geometric mean of y and z.
I.e $r=\frac{y}{x}$ or $\frac{z}{y} \Rightarrow \frac{y}{x}=\frac{z}{y} \Rightarrow y=\sqrt{x z}$

The Geometric Mean (G.M) of a series containing n observations is the nth root of the product of the values.

Consider, if $x_{1}, x_{2} \ldots . X_{n}$ are the observation, then the G.M is defined as:

$$
G . M=\sqrt[n]{x_{1}} x_{2} \ldots x_{n}
$$

The sum to infinity of a GP
If the number of terms in a GP is not finite, then the GP is called infinite GP.
The sum to infinity of a GP whose first term is \boldsymbol{a} and common ratio \boldsymbol{r} is given by ;

$$
S_{\infty}=\frac{a}{1-r} \text { where }|a|<1
$$

The sum of the terms of a sequence

The \boldsymbol{n} th term of a sequence which is not necessarily an AP or GP is given by

$$
T_{n}=S_{n}-S_{n-1}
$$

Edukamer

