SECTION A (CGCEB 2016) | General and | d Physical Chemistry | e Marie de Santa de Carlos | | |--------------------|--------------------------------------|--|--| | . (a) (i) | Define the second ic | misation energy of fluorin | C ************************************ | | (ii) | Write an equation to | represent the second ioni | sation energy of fluorine | | (iii)
of fluori | | , sketch a graph to show t | he successive ionisation energie | | | = ⁴⁸ c0 | e e e e e e e e e e e e e e e e e e e | | | log LE | 2 6 W 2 2 | | | | - A 4° | gara wa o e e | w = | | | div. | number of ionisation | Bas day | en de la companya de
La companya de la co | | (b) (i) | Draw the "dot and c | ross" diagram of carbonic | 6 marks
acid H ₂ CO ₃ | | (ii) Drav | v the resonance structur | res of the HCO ₃ anion. | | | | nplete the table below
g species. | . W. W. C. 41 C. 51 C. S. | shapes and bond angles of th | | Speci | es | Molecular shape | Bond angles | | | CF ₄ | | 7.34 | | | NF ₃ | | | | | CH ₂ Cl ₂ | | | | | H ₃ 0 ⁺ | | | 7 marks | (c) The | following reaction occ | urs at 450°C. H _{2(g)} | $+ I_{2(g)} \rightleftharpoons 2HI_{(g)}$ | |------------|---------------------------------------|---------------------------------|--| | Experiment | Initial | Initial | Initial rate of production | | | [H ₂]mol dm ⁻³ | $[l_2]$ mol dm $^{-3}$ | of HI mol dm ⁻³ s ⁻¹ | | 1 | 0.0113 | 0.0011 | 1.9×10^{-23} . | | 2 | 0.0220 | 0.0033 | 1.1×10^{-22} | | 3 | 0.0550 | 0.0011 | 9.3×10^{-23} | | 4 | 0.0220 | 0.0056 | 1.9×10^{-22} | | | etermine the order of the reaction with respect to H ₂ and I ₂ . A) Order with respect to H ₂ | | |---------------|--|-------------------------| | (H | B) Order with respect to I ₂ |) two took too too. mg. | | (ii) | What is the overall order of the reaction? | | | | Write an expression for the rate law | | | (iv) | Determine the value of the rate constant and state its units. | | | | 7 marks | | | li
Nega | a) (i) Explain how positive and negative deviations from Raoult's law arise quids are mixed. | | | | ive deviation | | | (ii)
a hig | her or lower boiling point? Explain | | | (b) | (i) Define the "mole of a substance" | 7 - | | (R | Iow many moles of carbon atoms are there in 1.0 mole of sucrose, C ₁₂ H ₂₂ O ₁₁ ? AM H=1.0, C= ₁ 2.0, O= ₁ 6.0) | | | | How many carbon atoms are there in 1.0 mole of sucrose? (Avogaber= 6.022×10^{23}) |
adro's | 3 marks | | 215 | 72 6 (13) | | 3 marks | |-----------------|---|--|---|---| | (c) | (i) | Define "lattice energy" | 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 7 7 8 7 8 | | | 13 AP 101 Ea 10 | and one are need that have been take that their | | | | | | ii) Draw
energy. | the Bond-Haber cycle for NaCl and | use the data below | to calculate its lattice | | | : | Reaction | $\Delta H^{\emptyset}(KJ)$ | | | | | $Na_{(s)} \rightarrow Na_{(g)}$ | +109 | | | | | $Cl_{2(g)} \rightarrow 2Cl_{(g)}$ | +243 | | | | | $Na_{(g)} \rightarrow Na_{(g)}^+ + e^-$ | +496 | | | | ر
المحادث
المحادث المحادث | $Cl_{(g)} + e^- \rightarrow Cl_{(g)}^-$ | -34.9 | | | | | $Na_{(s)} + \frac{1}{2}Cl_{2(g)} \rightarrow NaCl_{(s)}$ | -411 | , | | - | | | | | | | ***==**== | | | | | • | | | | n, dar alle alle 100 mm ein jun ein jun ein ein ein ein ein dar der ein ein ein ein ein dar dar ein ein ein ein | | • | in the same | WEAR TO THE TENER OF | | 10 marks | | d) | | lent measuring standard electrode pot | | ving set up in which | | he c | onnected | l a half-cell -to a standard hydrogen el | lectrode.
Emeter | | | ٠• | | The state of s | | | | | | | | | | T | J of | l otm | | | | | $H_{2(g)}$ at 1 | \ | | | | | | \ salt bridge | Tin ele | ctrode | | | | 1 1 1 11 | 11 1 | | | | | 41116 | | | | | | | | | Name the solution which could be used in the left-hand beaker--- Suggest a solution that is suitable for the salt bridge - Write the cell diagram for the arrangement above. (i) (ii) ## SECTION B (CGCEB 2016) Inorganic (Mineral) Chemistry | (A) Vol | Write the outer electron configuration of the halogense and explain how the following properties will vary down the group 17 (Group the periodic table. | |-----------------------------------|--| | | etropositivity | | (b) A so equation $Cl_{2(g)} + 1$ | 5 marks olution of chlorine in water is used as a disinfectant. The following chemical indicates the reaction between water and chlorine $H_2O_{(1)} \rightarrow Cl_{(aq)}^- + ClO_{(aq)}^- + 2H_{(aq)}^+$ a balanced equation for the reaction that occurs when a concentrated solution of a added to this medium | | (ii) Wha | at name is given to this type of reaction? | | (c) (i) | vely: | | | ain any similarity or difference in the methods of preparation of HF and HI | | (d) Nitri
(i) Nam | 3 marks c acid is manufactured by the catalytic oxidation of ammonia. e the source of ammonia used in this process | | (ii) Write | e a balanced equation for the oxidation of ammonia to nitrogen monoxide | | the catal | gest the temperature at which the reaction in d(ii) occurred as well as the name of yst that was usede an equation for the conversion of NO ₂ to HNO ₃ | | (e) Sulpl | huric acid is prepared from sulphur dioxide through the reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ is the pressure of one atmosphere maintained taking into consideration that g the pressure will favour the production of more $SO_3(g)$? | | (ii) Whic | ch catalyst is used in the process? | | | 2 marks | | (11) | What is | observed | when SO | _{2(g)} is bul | obled thro | ugh soluti | ons of F | e ³⁺ and N | MnO_4^- ions | |-----------------------------|--|---------------------------------------|---------------------------------|--|--|---------------------------|----------------------------------|--|---| | m# 65 kg | Fe ³⁺ ion | | 9 60 C C C C C C 60 60 60 60 60 | m 60 im 62 68 68 68 64 im im im im im | | *** | (C) (c) 100 km km km km km km km | | -
 | | (B) | MnO ₄ io | | | 27 to 400 to 100 to 500 | of left left (int left left) (int | 7 | | | | | | | ngang ngang nang ang garawa sa | | | | | | 3 marl | | | (a) | Define (i) d- | -block ele | ment | | | | | | | | (ii) | Transitio | n metal | | | | | | | | | Fe ² · | (atomic n | umber=2 | n the "el
6) | lectron-ir | -box" co | nfiguratio | n of the | Fe ²⁺ ar | nd Fe ³⁺ io | | Fes. | ion | (i) | First ionis Atomic ra | andium to
sation ene

dius | zinc)
rgy | | | | | | rst transitio | | | | | 는 A 파 및 등 및 및 수 IP 원 등 | | | | | 4 mark | | | (d). | The eleme | ents of po | riod 2 of | the Perio | dic Table | include L | ithium to | n Neon | | | E | Complete
lement | Li | Be | B B | C C | a of the sta | able oxid | le of the | element.
Ne | | | ormula | | ļ | | | | | | 110 | | E | | | | | | | | | . [| | - 1 | f oxide | | | 1 | 1 | i | 1 | | | | 0 | f oxide
dentify the | element | whose or | xide is | | <u> </u> | | | | | o
(ii) I
(A) | dentify the
Most basic | C | | | | ********** | w = ++ ++ = = ++ = = | ** *** *** *** *** *** *** *** *** *** | | | ii) I
A)
B) | dentify the
Most basic
Most acid | ic ======= | | 조 전 점 점 점 본 및 점 중 없 중 점 | M = = = = = = = = = = = = = = = = = = = | 0 H 0 C 0 0 0 0 0 0 0 0 0 | 백 대 대 대 소 다 의 im en c | | · CS tak to 대 대 대 자 자 지 리 나 대 대 | | o
(ii) I
(A)
(B) | dentify the
Most basic | ic ======= | | 조 전 점 점 점 본 및 점 중 없 중 점 | M = = = = = = = = = = = = = = = = = = = | 0 H 0 C 0 0 0 0 0 0 0 0 0 | 백 대 대 대 소 다 의 im en c | · · · · · · · · · · · · · · · · · · · | 3 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | ii) I (A) (B) (C) | dentify the
Most basic
Most acid
Amphoter
Sketch the | eicicic | the first | ionisation | 1 energy v | ersus aton | nic num | 3 mark | 3 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | (ii) I
(A)
(B)
(C) | dentify the
Most basic
Most acid
Amphoter | eicicic | the first | ionisatio | ı energy v | ersus aton | nic num | 3 mark
ber for th | s
e element | | ii) I
A)
B)
C) | dentify the
Most basic
Most acid
Amphoter
Sketch the | c
icic
ic
graph of
period | the first | ionisatio | 1 energy v | ersus aton | nie num | 3 mark
ber for th | s
e element: | | ii) I
A)
B)
C) | dentify the Most basic Most acid Amphoter Sketch the across the | c
icic | the first | ionisation | 1 energy v | ersus aton | nic num | 3 mark
ber for th | s
e element | | (iv) Write equations for the reaction of the oxide of Be and the oxide of B with water. | |---| | (A) Oxide of Be | | (B) Oxide of B | | marks | ## SECTION B (CGCEB 2016) Organic Chemistry | was for $0 = 1$ | bund to contain 60% carbon, 4.4 % hydrogen and 35.6% oxygen (RAM: $C = 12$, $H = 1$, 6). | |------------------|---| | (i) | Determine the empirical formula of aspirin? | | ~ | | | (ii) | What is the molecular formula of aspirin? | | (iii) | State the technique that can be used to determine the molecular weight of aspirin | | (b) | 5 marks (i) Give the structures of all the isomers of a compound with molecular formula Cl ₂ | | | | | (ii) | Which structure(s) in 5b(i) is (are) optically active? | | (c) | 5 marks Study the reaction scheme shown below. | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | $C \xrightarrow{z} CH_3CH_2CH_2COOH$ | | (i) | Give the structural formula of | | B | | | ii) Gi
v
w | ve the reagent(s) and reaction conditions for steps labelled v-z. | | | | ## **Edukamer** Name the mechanism associated with each of the following reactions. (d) (i) CH₃CH₃ uv light CH₃CH₂CI - 6. (a) Give the systematic name of the following compounds (i) CH₃CHFCCl₂CH₂OH ----- - (ii) CH₃CH(CH₃)CH₂CHO ----- - (iii) C₆H₅CH₂CONH₂ ----- - (iv) CH₃CH(NH₂)COOH ----- - (b) Draw the structural formula of each of the following compounds. - (i) 2-methylbutanoic acid ----- - (ii) Hexan-2-one (2-hexanone) ----- - 4 marks (iii) 2,4,6-tribromophenol ----- - (c) Give the products of following conversions. (i) (ii) (iii) (iv) $$CH_3CH_2CH(OH)CH_3$$ $H^+/K_2Cr_2O_7$ (v) (d) Suggest a chemical test to distinguish between the following pairs of compounds. | and OH | Anna Carlos Control | |--|---------------------| | (i) | | | (ii) $CH_3C \equiv CCH_3$ and $CH_3CH_2C \equiv CH$ | | | (e) Which compound is more basic: CH ₃ NH ₂ or C ₆ H ₅ NH ₂ ? | 6 marks | | Explain | | | |
2 marks |