PART II

GENERAL AND PHYSICAL CHEMISTRY

SET 1: SECTION A (CGCEB 2009)

1. The diagram below shows the mass spectrum of chlorine, atomic number 17. The relative atomic mass of chlorine can be obtained from the spectrum.

(a) (i) What do you understand by "relative atomic mass"?-----

(iii) Give the number of protons, electrons, and neutrons in each isotope

Isoto pes	protons	electrons	neutrons
Isotope 1			
Isotope 2			

(iv) Given that the relative abundances are 75.53 and 24.47 percent respectively. Calculate the relative atomic mass of chlorine ------

(6 marks)
the determination

(b) Below is the diagram of the Rutherford gold-leaf experiment used in the determination of the structure of the atom

(i). Give the possible source of α-particles -----

(ii). State the mass and charge of the α-particles-----

(iii). Give TWO observations that were obtained from the experiment (Observation1)

energies of Argon	-	/ation 2)
4th	` '	
4th	2 nd	
(c) The first and second ionisation energies of argon (atomic number 18) are 1521 KJ mol and 2666 KJ mol respectively and for potassium (atomic number 19) are 419 KJ mor and 3051 KJ mol respectively. (i) Give TWO reasons to explain the differences in the first and second ionisation energies of Argon————————————————————————————————————		
(c) The first and second ionisation energies of argon (atomic number 18) are 1521 KJ mol land 2666 KJ mol respectively and for potassium (atomic number 19) are 419 KJ mor and 3051 KJ mol respectively. (i) Give TWO reasons to explain the differences in the first and second ionisation energies of Argon————————————————————————————————————	_	
(c) The first and second ionisation energies of argon (atomic number 18) are 1521 KJ mol¹ and 2666 KJ mol¹¹ respectively and for potassium (atomic number 19) are 419 KJ mor¹ and 3051 KJ mol¹¹ respectively and for potassium (atomic number 19) are 419 KJ mor¹ and 3051 KJ mol¹¹ respectively. (i) Give TWO reasons to explain the differences in the first and second ionisation energies of Argon————————————————————————————————————	4***********	
Potassium— (ii) Write the electronic configuration of the ion K ²⁺ (using the spd notation)————————————————————————————————————	and (i), energie Argon-	first and second ionisation energies of argon (atomic number 18) are 1521 KJ mol- 12666 KJ mol-1 respectively and for potassium (atomic number 19) are 419 KJ mor-1 3051 KJ mol-1 respectively. Give TWO reasons to explain the differences in the first and second ionisation s of
(iii) What information can be obtained about the arrangement of electrons from ionisation energies? 6 marks (Total 20 marks) 2. You are given the following data: Process A. K(s) → K(g) + 90 B. Cl _{2(g)} → 2Cl _(g) + 121 C. K(g) → K [†] _(g) + 418 D. Cl _(g) → Cl _(g) - 364 E. K [†] _(g) → K [†] _(aq) - 322 F. Cl _(g) → Cl _(aq) - 364 G. K(g) → Cl _(g) → KCl _(s) - 701 (a) (i) Use the data to construct a Born-Haber cycle for the formation of potassium chloride (ii) What bonds are broken in the atomisation of Potassium? Chlorine? (iii). Sketch a labelled diagram to show the type of bonding in solid potassium	_	
energies? 2. You are given the following data: Process A. $K_{(g)} \rightarrow K_{(g)}$ B. $Cl_{2(g)} \rightarrow 2Cl_{(g)}$ C. $K_{(g)} \rightarrow K_{(g)}^{\dagger}$ Process B. $Cl_{2(g)} \rightarrow 2Cl_{(g)}$ C. $K_{(g)} \rightarrow K_{(g)}^{\dagger}$ C. $K_{(g)} \rightarrow K_{(g)}^$	(ii).	Write the electronic configuration of the ion K ²⁺ (using the spd notation)
Process ΔH^0 KJ mol ⁻¹ A. $K_{(s)} \rightarrow K_{(g)}$ + 90 B. $Cl_{2(g)} \rightarrow 2Cl_{(g)}$ + 121 C. $K_{(g)} \rightarrow K_{(g)}^+$ - 364 E. $K_{(g)}^+ \rightarrow K_{(aq)}^+$ - 322 F. $Cl_{(g)}^- \rightarrow Cl_{(aq)}^-$ - 364 G. $K_{(g)}^+ \rightarrow Cl_{(g)}^- \rightarrow KCl_{(s)}^-$ - 701 (a) (i) Use the data to construct a Born-Haber cycle for the formation of potassium chloride	energie	6 marks (Total 20 marks)
A. $K_{(g)} \rightarrow K_{(g)}$ + 90 B. $Cl_{2(g)} \rightarrow 2Cl_{(g)}$ + 121 C. $K_{(g)} \rightarrow K_{(g)}^{\dagger}$ + 418 D. $Cl_{(g)} \rightarrow Cl_{(g)}^{\dagger}$ - 364 E. $Cl_{(g)} \rightarrow Cl_{(aq)}^{\dagger}$ - 322 F. $Cl_{(g)} \rightarrow Cl_{(aq)}^{\dagger}$ - 701 (a) (i) Use the data to construct a Born-Haber cycle for the formation of potassium chloride		
B. $\text{Cl}_{2(g)} \rightarrow 2\text{Cl}_{(g)}$ + 121 C. $K_{(g)} \rightarrow K_{(g)}^{\dagger}$ + 418 D. $\text{Cl}_{(g)} \rightarrow \text{Cl}_{(g)}^{\dagger}$ - 364 E. $K_{(g)}^{\dagger} \rightarrow K_{(aq)}^{\dagger}$ - 322 F. $\text{Cl}_{(g)}^{\dagger} \rightarrow \text{Cl}_{(aq)}^{\dagger}$ - 701 (a) (i) Use the data to construct a Born-Haber cycle for the formation of potassium chloride (ii) What bonds are broken in the atomisation of Potassium? Chlorine? Chlorine? (iii). Sketch a labelled diagram to show the type of bonding in solid potassium		
C. K _(g) → K ⁺ _(g) + 418 D. Cl _(g) → Cl _(g) - 364 E. K ⁺ _(g) → K ⁺ _(aq) - 322 F. Cl _(g) → Cl _(aq) - 364 G. K ⁺ _(g) + Cl _(g) → KCl _(s) - 701 (a) (i) Use the data to construct a Born-Haber cycle for the formation of potassium chloride		
D. Cl _(g) → Cl _(g) — 364 E. K' _(g) → K' _(aq) — 322 F. Cl _(g) → Cl _(aq) — 364 G. K' _(g) + Cl _(g) → KCl _(s) — 701 (a) (i) Use the data to construct a Born-Haber cycle for the formation of potassium chloride (ii). What bonds are broken in the atomisation of Potassium?————————————————————————————————————		1 1
E. K' _(g) → K' _(aq)		
F. Cl _(g) → Cl _(aq) — 364 G. K' _(g) + Cl _(g) → KCl _(s) — 701 (a) (i) Use the data to construct a Born-Haber cycle for the formation of potassium chloride (ii) What bonds are broken in the atomisation of Potassium?————————————————————————————————————		
G. K ⁺ _(g) + Cl ⁻ _(g) → KCl _(s) -701 (a) (i) Use the data to construct a Born-Haber cycle for the formation of potassium chloride (ii) What bonds are broken in the atomisation of Potassium?————————————————————————————————————		
(ii) Use the data to construct a Born-Haber cycle for the formation of potassium chloride (iii) What bonds are broken in the atomisation of Potassium? Chlorine? (iii). Sketch a labelled diagram to show the type of bonding in solid potassium		(g) (aq)
(ii). What bonds are broken in the atomisation of Potassium? Chlorine? (iii). Sketch a labelled diagram to show the type of bonding in solid potassium		Use the data to construct a Born-Haber cycle for the formation of potassium chloride
(ii). What bonds are broken in the atomisation of Potassium?	CD 1/2 1/2 C	
(ii). What bonds are broken in the atomisation of Potassium? Chlorine? (iii). Sketch a labelled diagram to show the type of bonding in solid potassium	~~~	
(ii). What bonds are broken in the atomisation of Potassium? Chlorine? (iii). Sketch a labelled diagram to show the type of bonding in solid potassium	***	· · · · · · · · · · · · · · · · · · ·
(ii). What bonds are broken in the atomisation of Potassium?		
Chlorine? (iii). Sketch a labelled diagram to show the type of bonding in solid potassium	(ii).	What bonds are broken in the atomisation of
(iii). Sketch a labelled diagram to show the type of bonding in solid potassium		
	(iii).	

E-CHEMISTRYSELFTUTORIALS FOR ADVANCED LEVEL

1079 5070 6070 6070 4020 5030 603			6 mar	ks
(i) NH ₃ , B		lot and cross models to	represent the species (CuCl ₄) ²	and
des des des des des des App de	ains dan dire dan dan dan dan dire direptan dan dan dan dan ²⁰⁰ d	, , , ^{, ,} , , , , , , , , , , , , , ,		
Inc	licate in the n	nodels a dative covale	nt bond and a simple covalent bo	ond
Sketch	the shape an	d predict the bond ang	gles of the species NH ₃ , BH ₃ ,	
fluence t	he physical poes water (H	properties of substance 20) have hydrogen bor	5marlecular forces. Intermolecular forces. anding whereas hydrogen sulphid	ces
Why do none?-	the physical poes water (H	properties of substance 2O) have hydrogen border. tate a named physical has influenced the physical	ecular forces. Intermolecular forces. nding whereas hydrogen sulphid property and a named example v	ces e (H ₂ S
fluence to Why do none?———————————————————————————————————	the physical poes water (H	properties of substance 2O) have hydrogen both control tate a named physical that influenced the physical physical that influenced the physical control tate and physical cont	ecular forces. Intermolecular forces. Inding whereas hydrogen sulphid property and a named example variety and property.	ces e (H ₂ S
Why do none?	table below s	properties of substance 2O) have hydrogen border. tate a named physical has influenced the physical	ecular forces. Intermolecular forces. Inding whereas hydrogen sulphid property and a named example variety and property.	ces e (H ₂ S
Why do none?	table below solecular force	properties of substance 2O) have hydrogen border. tate a named physical has influenced the physical	ecular forces. Intermolecular forces. Inding whereas hydrogen sulphid property and a named example variety and property.	ces e (H ₂ S
In the intermed	table below solecular force	properties of substance 2O) have hydrogen border. tate a named physical has influenced the physical	ecular forces. Intermolecular forces. Inding whereas hydrogen sulphid property and a named example variety and property.	ces e (H ₂ S

		# 80 B W W W 80 A A A A A A A A A A A A A A A A A A		4marks
				(Total 20 mark
eq	uation		$^{2-}_{8(aq)} \rightarrow I_{2(aq)} + 2$	
our	nt of iodine prododisulphate ion. What other me	uced at various times, a	s well as the conce ollow the progress	
).	What variable Why is it nece	will be measured?ssary to "quench" the re	eaction?	
') . Il Va	In the space be ary with time	low, sketch how the con	ncentration of reac	tant/ and product indicated
	[S ₂ O ₈ ² -]		$[I_2]$	
	[S ₂ O ₈ ²⁻]	•	- 23	
			· ·	
				en de la companya de La companya de la co

	0 5	10 15 20 25 30	0 5 10	15 20 25 30
		Time———	Time_	——————————————————————————————————————
~				8 marks
11		ta obtained for the reac		v Initial rate of reaction
	2Apetiment	$[S_2O_{8(aq)}^2]$		$(\text{mol dm}^{-3}\text{s}^{-1})$
	1	3.8x10 ⁻²	3.0×10^{-2}	7.0×10^{-6}
•			3.0x10	7.0.2.10
	2	7.6x10 ⁻²	3.0×10^{-2}	14.0×10^{-6}
	3	7.6x10 ⁻²	6.0×10^{-2}	28.0 x10 ⁻⁶
).	What is the ord	ler of the reaction with	respect to	
	I _(aq) ?		**	ar to crist the facility of Crist to the winds of Marie of the crist o
\				
).	Rate expression	expression and the over	an order of reactio	n
	Tempo Carpi Costo	C.L.		

(c) Gi	ven the following standard electrode potentials: A. $I_{2(aq)}, 2I_{(aq)}^{-}/Pt$ $E^{\circ} = +0.54V$
(i).	B. $S_2O_{8(aq)}^{2-}/Pt$ $E^\circ = +2.01V$ What is a standard electrode potential?
(1)*	That is a standard electrode potential.
(ii).	Write the half equation for the reduction process in the equation of the kinetic study (in (a) above)
(iii).	Write the cell diagram for the cell made by linking the electrodes A and B
(iv).	Calculate the e.m.f of the cell
(v).	Name the instrument that could be used to measure the cell e.m.f and give one main characteristics of the instrument Instrument
16	Characteristic
(d) (i)	What is an acid according to Bronsted-Lowry?
	$10_3 + H_2SO_4 \rightarrow H_2NO_3 + HSO_4$ $conjugate$
	al and Physical Chemistry
1. (a	The nucleus
(ii). (iii).	Atomic number
(b) (i) (A). (B). (A). (B). (iii)	3 marks What information is obtained from the following about the structure of the atom? Mass spectrum The line emission spectrum In the mass spectrometer, what is the function of The electron gun The magnet Calculate the relative atomic mass of neon given the following data 20 Ne: = 114, 21 Ne: = 0.2 and 22 Ne: = 11.2