Chemisty GCE Advanced Levlel Paper 2 June 2013

981?5A9F'\B:C

SECTION A (CGCEB 2013)

General and Physical Chemistry

49 July 1849 - 1 19 1890

1. (a) (i).	What do you understand by, Avogadro's number
(ii).	Amount of a substance
(Λ	2 marks solution was made by dissolving 9.0g of hydrated aluminium sulphate $l_2(SO_4)_3.6H_2O$ in 250 cm ³ of solution. (RAM: Al= 27; O=16; S=32; II=1). lculate:
(i).	The number of moles of hydrated aluminium sulphate solution
(ii).	The number of moles of sulphate ions in this solution.
(iii).	The concentration (mol dm ⁻³) of the hydrated aluminium sulphate.
(c) (i)	What is a nuclear reaction? Give a suitable example of a nuclear reaction

Chemistry Paper 2 Advanced Level June 2013

to to to			
(ii).	In a transformation $^{238}_{92}$ U decays to $^{226}_{88}$ Ra. How many alpha and beta particles are emitted?		
Α.	Alpha particles:		
B.	Beta particles:		
	3 marks		
co	on burns in chlorine to form a chloride. An experiment showed that 5.60g of iron ombined with 10.65g of the chlorine to form a chloride. (RAM: Fe=56, Cl=35.5).		
	etermine; The number of moles of chlorine used		
(i).	The number of moles of chlorine used		
,			
(ii).	The number of moles of iron used.		

(iii).	The equation for the reaction.		
	3 marks		
(e)	(i) Define bond energy term,		
(ii).	Write an equation to represent the lattice energy of calcium chloride.		
	2 marks		
, ,	iven the following data:		
	$H_{at}^{\theta}[C_{(s)}] = +717 \text{ k/mol}^{-1}$		
	$H_{at}^{H}[H_{2(g)}] = +218 \text{ kJmol}^{-1}$ of gaseous hydrogen atoms $H_{f}^{f}[CH_{4(g)}] = -75 \text{ kJmol}^{-1}$		
	mine the C-H bond energy in methane. $$		
	3 marks		
(g) Ti	heoretical and experimental values of lattice energy of a compound may differ. Explain why the values may differ.		
	4		
(ii). A.	Give an example of a halide in each case where the values of the lattice energies Are different:————————————————————————————————————		
В.	Are similar:		
(iii).	Why is the Born Haber cycle used to determine the lattice energies of ionic compound?		

Chemistry Paper 2 Advanced Level June 2013

	and and easy too way and easy too		g ar	4450	4 marks Total = 20 marks
2. (a)		do you understand by	ं ति हरत हरत हरत की की ⁽³³⁾ हरत हरत की की की हरत हरत हरत हरत की हरत ³³³	من سر سر ان	
(ii).	Order o	of reaction	ता ता ता ता ता ता ता त्व त्व त्व त्व त्व ता ता ता त्व व्व त्व	co co co cus co	में में का का का का मां का में का में का में का मां में का मां मां का मां का मां का मां का मां का मां का मां :
(b) WI	hy is the	order of reaction imp	ortant in the stud	y ofrate ofreaction?	2 marks
, ,		clow was obtained for an acid catalyst	ut		
Exper	iment	CH ₃ COCH _{3(ac}	$I_{1} + I_{2(aq)} \rightarrow CH$ Concentration	$_3$ COCH $_3$ I $_{(aq)}$ + HI $_{(aq)}$	Rate/mol dm ⁻³ s ⁻¹
Mie		·[CH ₃ COCH _{3(aq)}]/	[I _{2(aq)}]/	[H _(aq)]/ mol dm ⁻³	
	स्त्र । सम्बद्धाः	(mol dm ⁻³)	(mol dm ⁻³)		
1		0.30	0.05	0.05	5.7 x10 ⁻⁵
2		0.30	0.10	0.05	5.7 x10 ⁻⁵
3		0.30	0.05	0.10	1.2 x10 ⁻⁴
4		0.40	0.05	0.20	3.1 x10 ⁻⁴
5		0.36	0.05	0.05	7.1 x10 ⁻⁵
(i). (ii). (iii). iv).	[CH ₃ CC [I ₂ (aq)] [H _(aq)]. What is Write th	ne rate expression for te the value of the rate	he reaction? the reaction		

Chemistry Paper 2 Advanced Level June 2013

(v).	State a method you would use to measure the rate of the reaction a quenching the reaction	
(d) W	hat is an ideal solution?	7 marks
(e) M pu me	ethanol and ethanol form an ideal solution. The vapour pressure of pre methanol at 20 °C is 44 mmHg and 94 mmHg respectively. A mixethanol (CH ₃ OH) and 45 g of ethanol (CH ₃ CH ₂ OH) is prepared. (RA; H = 1). Calculate The mole fraction of methanol in the solution.	1mark pure ethanol and sture of 30 g of AM: C = 12; O =
(ii).	The total pressure of the vapour above the solution at 20 °C	
(iii).	The mole fraction of methanol in the vapour above the solution	
	Suggest a method of separating the components of a solution cond ethanol. Sketch and label a diagram of boiling point against composition for trichloromethane (b.pt:334 K) and propanone (b.pt:329 K). Can a mixture of trichloromethane and propanone be separated into	-1 mark or the mixture of
	components by fractional distillation?	
***************************************	Explain	
3. (a) State the equilibrium law.	
N ₂	the equilibrium constant for the reaction $_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ is 1.0×10^{-1} at $500K$, 8.0×10^{-5} at 7000^{-8} at $1100K$ From the data, predict and explain Whether the reaction is endothe	*
(ii). A.	Predict and explain the shift of equilibrium position of the reaction to the following changes Increasing the temperature at constant pressure	
		en der sen sen sen sen sen sein der der der ber bei der den ein ern ein ein sen sen sen den den bes ein ein

В.	Increasing the pressure at constant temperat	₩ * C , 000 000 000 000 000 000 000 000 000 0	
C.	Adding a catalyst at constant temperature ar		
(iii).	What is the effect of increase in temperature at constant pressure on the value of the equilibrium constant?		
(c) De	efine 'standard electrode potential' of an elect	6 marks	
* gas the see 'er			
(d) Giv	Z(aq)	+0.54 V +0.10 V	
(i). A.	Select the species which is the strongest Reducing agent		
B.	Oxidising agent		
(ii).	Write the cell diagram when the half cells are coupled and calculate the emf of the cell.		
(e) Ex (i).	The bond dissociation energy of the hydrog hydrogen molecule ion (H2 ⁺)		
(ii).	Both aluminium and carbon are solid, aluminium forms sheets whereas carbon breaks into pieces when hammered.		
(iii).). Ammonia boils at -33.3°C while phosphine boils at -87.7°C.		
(f) (i)	į vartas var		
	Substance Shape	Explanation	
	NH ₃		
1.1.	BF3		
(ii).	Draw the electron density map for the hydro	ogen chloride molecule.	
Principal State and the state of the state o		5 marks Total = 20marks	

981 ?5A9F"\B: C

SECTION B (CGCEB 2013) Inougania (Minoral) Chamiet

Inorganic (Mineral) Chemistry

- 4. (a) The elements, F, Cl, Br, and I belong to GROUP VII (GR 17) of the Periodic Table. State and explain the trend of
- (i). Physical state of the elements down the group.
- (ii). Oxidising power of the elements up the group. -----

i).	Acid strength of the hydrogen halides (HX) down the group			
o) (i)	What is a disproportionation reaction?			
(ii) A	Give balanced equations for the reaction of chlorine with Cold dilute potassium hydroxide.			
В.	Hot concentrated potassium hydroxide			
(i) A. B. (ii)	3 marks Give balanced equations for the reaction of concentrated sulphuric acid with: Solid sodium chloride			
-	rite the formula and naidation states.	ume of the compounds in wh	3 m	arks
	Oxidation state	Formula of compound	Name of compound	
y result	+6			
	+4		·	
	+2			
	-2	e e e e e e e e e e e e e e e e e e e		
) Gi [,] i).		which the oxidation state of	sulphur	
i).		ants to products	way bug bug was said tool took took took took too bug	n ing ing ing ing gg ing gg ing may ing ing ing ing ing ingting ing ing ing ing ing ing ing ing ing
atı	hat is the consequence mosphere?	on the environment of the	2 n release of sulphur diox	narks tide into the
	ve one important use	of a nitrogen compound in a	griculture	
		<u> </u>		
(a)	(i) Distinguish b	etween ad-block clement a	nd a transition elemen	and their lives have been been sould been took their their died died took took poor
(ii)) Give a suitable ex d-block element			

E-CHEMISTRY SELF TUTORIALS FOR ADVANCED LEVEL

aqueou	would be observed if excess aqueous sodium hydroxicus solutions of agnesium chloride	
). Ba	rium chloride	
) Accou	nt for the observations in (f) giving any relevant ionic	2 marks
, .		2 marks
	From the compounds of the Group IV (Group 14) elementate example for each of the following:	
90 - K	Type of compounds	Name or formula of example
yan(i)	A strongly reducing oxide	
(ii)	A giant covalent oxide	<u> </u>
(iii)	A strongly reducing chloride	
(111)	71 Strongly roddenig emoride	
(iv)	A covalent chloride which is not hydrolysed by water	
Lead (IV) oxide reacts with hydrochloric acid according to t $PbO_2 + 4HCl \rightarrow PbCl_2 + Cl_2 + 2$ is lead (IV) oxide oxidising hydrochloric acid in this re	H_2O